Most cited article - PubMed ID 32682180
Improving motility and fertilization capacity of low-quality sperm of sterlet Acipenser ruthenus during storage
Short-term storage and management of sperm in vitro is an easy and economical process in which suitable extenders can be utilized to extend the storage period and prevent sperm function impairment. Therefore, the current study aimed to evaluate the effect of suitable extenders during the short-term storage of sterlet sperm and determine their fertilizing capacity and hatching success. Three extenders containing a composition of 16, 20, and 24 mM NaCl, 1 mM KCl, 0.1 mM CaCl2, 10 mM Tris, pH 8.0 with osmolarity of 46, 55, and 62 mOsm/kg, were used to dilute the sperm of four sexually mature sterlet males (n = 4). Using a CASA system, the motility and velocity of undiluted and diluted sperm with extenders (E1 - E3) were assessed over 6 days at 0-2 °C. The short-term stored diluted sperm was then used in the fertilization and hatching assay, and undiluted fresh and stored sperm was used as a control. A two-way factorial analysis of variance (ANOVA) model confirmed significant effects on sperm motility, curvilinear velocity (VCL), and straight-line velocity (VSL) (P < 0.001), as well as their interaction with the extender. The model was decomposed into a one-way ANOVA to examine the impacts of extenders and storage time. With increasing storage periods, the sperm motility and velocity gradually decreased for diluted sperm with three extenders (E1-E3) but sharply decreased for undiluted sperm (Control). The motility of undiluted sperm was found 3.77 ± 4.09% at 4 days, whereas sperm diluted with extenders showed 57.57 ± 12.33% (E1), 64.34 ± 11.86% (E2), and 61.40 ± 12.41% (E3) motility at 6 days. This study explored extenders optimized with higher osmolarity (39-62 mOsm/kg) and lower K+ (1 mmol/L) as the most suitable medium for storing sterlet sperm for 6 days. After 6 days post storage, sperm diluted with extenders E1-E3 achieved a fertilization rate of 31.29 ± 14.2%, 31.66 ± 8.84%, and 30.67 ± 10.02%, respectively, and hatching success of 29.58 ± 13.4%, 30.50 ± 7.89%, and 27.95 ± 9.62%, respectively with freshly ovulated eggs.
- Keywords
- CASA, Fertilization rate, Hatching rate, Sperm motility, Sperm short-term storage, Sperm velocity,
- MeSH
- Fertilization * drug effects MeSH
- Sperm Motility * drug effects MeSH
- Fishes * physiology MeSH
- Spermatozoa * physiology drug effects MeSH
- Semen Preservation * veterinary methods MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The purpose of the current study was to analyze phenotypic and functional characteristics of common carp (Cyprinus carpio) spermatozoa during in vitro aging and to investigate whether global DNA methylation is affected by sperm aging. Milt was collected from five individual males, stored in vitro on ice in a refrigerator for up to 96 h post stripping (HPS) and used to fertilize eggs with intervals of 1, 24 and 96 h. Computer-assisted sperm analysis and a S3e Cell Sorter was employed to determine the spermatozoa phenotypic characteristics (motility, velocity, concentration and viability). In addition, pH and osmolality of the seminal fluid and the capacity of the spermatozoa to fertilize, hatching rate and health of the resulting embryos were examined at different aging times. Whole-genome bisulfite sequencing was used to compare the global and gene-specific DNA methylation in fresh and aged spermatozoa. The results demonstrated that spermatozoa aging in common carp significantly affects their performance and thus the success of artificial fertilization. The methylation level at the cytosine-phosphate-guanine (CpG) sites increased significantly with 24 HPS spermatozoa compared to the fresh group at 1 HPS and then decreased significantly at 96 HPS. A more detailed investigation of gene specific differences in the DNA methylation was hindered by incomplete annotation of the C. carpio genome in the public databases.
- Keywords
- DNA methylation, common carp, epigenetics, fertilization, fish, milt, sperm aging, sperm quality, sperm storage,
- MeSH
- Carps genetics growth & development MeSH
- DNA Methylation genetics MeSH
- Spermatozoa metabolism pathology MeSH
- Aging genetics pathology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The aim of the present study was to investigate the spontaneous motility of spermatozoa and to optimize sperm collection, short-term sperm storage, and fertilization in zebrafish Danio rerio. The movement of spermatozoon in water was propagated along the flagellum at 16 s after sperm activation then damped from the end of the flagellum for 35 s and fully disappeared at 61 s after activation. For artificial fertilization, milt must be added to an immobilizing solution, which stops the movement of sperm and keeps the sperm motionless until fertilization. E400 and Kurokura as isotonic solutions were shown to be suitable extenders to store sperm for fertilization for 6 h. E400 stored sperm for 12 h at 0-2 °C. Sperm motility decreased only to 36% at 12 h post stripping for the E400 extender and to 19% for the Kurokura extender. To achieve an optimal level of fertilization and swim-up larvae rates, a test tube with a well-defined amount of 6,000,000 spermatozoa in E400 extender per 100 eggs and 100 µL of activation solution has proven to be more successful than using a Petri dish. The highest fertilization and swim-up larvae rates reached 80% and 40-60%, respectively, with milt stored for 1.5 h in the E400 extender at 0-2 °C.
- Keywords
- Danio rerio, extender, fertilization, short-term storage, sperm motility, zebrafish,
- Publication type
- Journal Article MeSH