Nejvíce citovaný článek - PubMed ID 33153611
Determination of one year stability of lipid plasma profile and comparison of blood collection tubes using UHPSFC/MS and HILIC-UHPLC/MS
In this community effort, we compare measurements between 34 laboratories from 19 countries, utilizing mixtures of labelled authentic synthetic standards, to quantify by mass spectrometry four clinically used ceramide species in the NIST (National Institute of Standards and Technology) human blood plasma Standard Reference Material (SRM) 1950, as well as a set of candidate plasma reference materials (RM 8231). Participants either utilized a provided validated method and/or their method of choice. Mean concentration values, and intra- and inter-laboratory coefficients of variation (CV) were calculated using single-point and multi-point calibrations, respectively. These results are the most precise (intra-laboratory CVs ≤ 4.2%) and concordant (inter-laboratory CVs < 14%) community-derived absolute concentration values reported to date for four clinically used ceramides in the commonly analyzed SRM 1950. We demonstrate that calibration using authentic labelled standards dramatically reduces data variability. Furthermore, we show how the use of shared RM can correct systematic quantitative biases and help in harmonizing lipidomics. Collectively, the results from the present study provide a significant knowledge base for translation of lipidomic technologies to future clinical applications that might require the determination of reference intervals (RIs) in various human populations or might need to estimate reference change values (RCV), when analytical variability is a key factor for recall during multiple testing of individuals.
- MeSH
- ceramidy * krev MeSH
- hmotnostní spektrometrie metody MeSH
- kalibrace MeSH
- laboratoře * normy MeSH
- lidé MeSH
- lipidomika metody MeSH
- referenční standardy * MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy * MeSH
Pancreatic cancer has the worst prognosis among all cancers. Cancer screening of body fluids may improve the survival time prognosis of patients, who are often diagnosed too late at an incurable stage. Several studies report the dysregulation of lipid metabolism in tumor cells, suggesting that changes in the blood lipidome may accompany tumor growth. Here we show that the comprehensive mass spectrometric determination of a wide range of serum lipids reveals statistically significant differences between pancreatic cancer patients and healthy controls, as visualized by multivariate data analysis. Three phases of biomarker discovery research (discovery, qualification, and verification) are applied for 830 samples in total, which shows the dysregulation of some very long chain sphingomyelins, ceramides, and (lyso)phosphatidylcholines. The sensitivity and specificity to diagnose pancreatic cancer are over 90%, which outperforms CA 19-9, especially at an early stage, and is comparable to established diagnostic imaging methods. Furthermore, selected lipid species indicate a potential as prognostic biomarkers.
- MeSH
- antigen CA-19-9 krev MeSH
- ceramidy krev MeSH
- lidé MeSH
- lipidomika metody MeSH
- lysofosfatidylcholiny krev MeSH
- metabolismus lipidů genetika MeSH
- multivariační analýza MeSH
- nádorové biomarkery krev genetika MeSH
- nádory slinivky břišní krev diagnóza mortalita patologie MeSH
- proporcionální rizikové modely MeSH
- senzitivita a specificita MeSH
- sfingomyeliny krev MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigen CA-19-9 MeSH
- ceramidy MeSH
- lysofosfatidylcholiny MeSH
- nádorové biomarkery MeSH
- sfingomyeliny MeSH
Reversed-phase ultrahigh-performance liquid chromatography-mass spectrometry (RP-UHPLC/MS) method was developed with the aim to unambiguously identify a large number of lipid species from multiple lipid classes in human plasma. The optimized RP-UHPLC/MS method employed the C18 column with sub-2-μm particles with the total run time of 25 min. The chromatographic resolution was investigated with 42 standards from 18 lipid classes. The UHPLC system was coupled to high-resolution quadrupole-time-of-flight (QTOF) mass analyzer using electrospray ionization (ESI) measuring full-scan and tandem mass spectra (MS/MS) in positive- and negative-ion modes with high mass accuracy. Our identification approach was based on m/z values measured with mass accuracy within 5 ppm tolerance in the full-scan mode, characteristic fragment ions in MS/MS, and regularity in chromatographic retention dependences for individual lipid species, which provides the highest level of confidence for reported identifications of lipid species including regioisomeric and other isobaric forms. The graphs of dependences of retention times on the carbon number or on the number of double bond(s) in fatty acyl chains were constructed to support the identification of lipid species in homologous lipid series. Our list of identified lipid species is also compared with previous publications investigating human blood samples by various MS-based approaches. In total, we have reported more than 500 lipid species representing 26 polar and nonpolar lipid classes detected in NIST Standard reference material 1950 human plasma.
- Klíčová slova
- Human plasma, Lipidomics, Lipids, Mass spectrometry, Retention behavior, Reversed-phase, Ultrahigh-performance liquid chromatography,
- MeSH
- chromatografie kapalinová metody MeSH
- hmotnostní spektrometrie metody MeSH
- lidé MeSH
- lipidy krev chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipidy MeSH