Nejvíce citovaný článek - PubMed ID 33193663
PENGUINN: Precise Exploration of Nuclear G-Quadruplexes Using Interpretable Neural Networks
BACKGROUND: Recently, deep neural networks have been successfully applied in many biological fields. In 2020, a deep learning model AlphaFold won the protein folding competition with predicted structures within the error tolerance of experimental methods. However, this solution to the most prominent bioinformatic challenge of the past 50 years has been possible only thanks to a carefully curated benchmark of experimentally predicted protein structures. In Genomics, we have similar challenges (annotation of genomes and identification of functional elements) but currently, we lack benchmarks similar to protein folding competition. RESULTS: Here we present a collection of curated and easily accessible sequence classification datasets in the field of genomics. The proposed collection is based on a combination of novel datasets constructed from the mining of publicly available databases and existing datasets obtained from published articles. The collection currently contains nine datasets that focus on regulatory elements (promoters, enhancers, open chromatin region) from three model organisms: human, mouse, and roundworm. A simple convolution neural network is also included in a repository and can be used as a baseline model. Benchmarks and the baseline model are distributed as the Python package 'genomic-benchmarks', and the code is available at https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks . CONCLUSIONS: Deep learning techniques revolutionized many biological fields but mainly thanks to the carefully curated benchmarks. For the field of Genomics, we propose a collection of benchmark datasets for the classification of genomic sequences with an interface for the most commonly used deep learning libraries, implementation of the simple neural network and a training framework that can be used as a starting point for future research. The main aim of this effort is to create a repository for shared datasets that will make machine learning for genomics more comparable and reproducible while reducing the overhead of researchers who want to enter the field, leading to healthy competition and new discoveries.
- Klíčová slova
- Benchmark, Convolutional neural network, Dataset, Deep learning, Genomics,
- MeSH
- benchmarking * MeSH
- chromatin MeSH
- genomika metody MeSH
- lidé MeSH
- myši MeSH
- neuronové sítě * MeSH
- strojové učení MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in the post-transcriptional regulation of biological processes. miRNAs regulate transcripts through direct binding involving the Argonaute protein family. The exact rules of binding are not known, and several in silico miRNA target prediction methods have been developed to date. Deep learning has recently revolutionized miRNA target prediction. However, the higher predictive power comes with a decreased ability to interpret increasingly complex models. Here, we present a novel interpretation technique, called attribution sequence alignment, for miRNA target site prediction models that can interpret such deep learning models on a two-dimensional representation of miRNA and putative target sequence. Our method produces a human readable visual representation of miRNA:target interactions and can be used as a proxy for the further interpretation of biological concepts learned by the neural network. We demonstrate applications of this method in the clustering of experimental data into binding classes, as well as using the method to narrow down predicted miRNA binding sites on long transcript sequences. Importantly, the presented method works with any neural network model trained on a two-dimensional representation of interactions and can be easily extended to further domains such as protein-protein interactions.
- Klíčová slova
- CLASH, deep learning, interpretation, miRNA target prediction, visualization,
- Publikační typ
- časopisecké články MeSH