Most cited article - PubMed ID 33339395
Seed Morphology in Silene Based on Geometric Models
INTRODUCTION: Plants undergo various natural changes that dramatically modify their genomes. One is polyploidization and the second is hybridization. Both are regarded as key factors in plant evolution and result in phenotypic differences in different plant organs. In Silene, we can find both examples in nature, and this genus has a seed shape diversity that has long been recognized as a valuable source of information for infrageneric classification. METHODS: Morphometric analysis is a statistical study of shape and size and their covariations with other variables. Traditionally, seed shape description was limited to an approximate comparison with geometric figures (rounded, globular, reniform, or heart-shaped). Seed shape quantification has been based on direct measurements, such as area, perimeter, length, and width, narrowing statistical analysis. We used seed images and processed them to obtain silhouettes. We performed geometric morphometric analyses, such as similarity to geometric models and elliptic Fourier analysis, to study the hybrid offspring of S. latifolia and S. dioica. RESULTS: We generated synthetic tetraploids of Silene latifolia and performed controlled crosses between diploid S. latifolia and Silene dioica to analyze seed morphology. After imaging capture and post-processing, statistical analysis revealed differences in seed size, but not in shape, between S. latifolia diploids and tetraploids, as well as some differences in shape among the parentals and hybrids. A detailed inspection using fluorescence microscopy allowed for the identification of shape differences in the cells of the seed coat. In the case of hybrids, differences were found in circularity and solidity. Overal seed shape is maternally regulated for both species, whereas cell shape cannot be associated with any of the sexes. DISCUSSION: Our results provide additional tools useful for the combination of morphology with genetics, ecology or taxonomy. Seed shape is a robust indicator that can be used as a complementary tool for the genetic and phylogenetic analyses of Silene hybrid populations.
- Keywords
- Morphometrics geometrics, Silene dioica, Silene latifolia, elliptical Fourier analysis, plant hybrid, polyploidy, seed shape, symmetry,
- Publication type
- Journal Article MeSH
In the Caryophyllaceae, seed surfaces contain cell protrusions, of varying sizes and shapes, called tubercles. Tubercles have long been described in many species, but quantitative analyses with measurements of size and shape are lacking in the literature. Based on optical photography, the seeds of Silene were classified into four types: smooth, rugose, echinate and papillose. Seeds in each of these groups have characteristic geometrical properties: smooth seeds lack tubercles and have the highest values of circularity and solidity in their lateral views, while papillose seeds have the largest tubercles and lowest values of circularity and solidity both in lateral and dorsal views. Here, tubercle width, height and slope, maximum and mean curvature values and maximum to mean curvature ratio were obtained for representative seeds of a total of 31 species, 12 belonging to Silene subg. Behenantha and 19 to S. subg. Silene. The seeds of the rugose type had lower values of curvature. Additionally, lower values of curvature were found in species of S. subg. Silene in comparison with S. subg. Behenantha. The seeds of S. subg. Behenantha had higher values of tubercle height and slope and higher values of maximum and average curvature and maximum to mean curvature ratio.
- Keywords
- Bézier curve, Caryophyllaceae, complexity, curvature, development, seed surface, tubercle,
- Publication type
- Journal Article MeSH
The application of seed morphology to descriptive systematics requires methods for shape analysis and quantification. The complexity of lateral and dorsal views of seeds of Silene species is investigated here by the application of the Elliptic Fourier Transform (EFT) to representative seeds of four morphological types: smooth, rugose, echinate and papillose. The silhouettes of seed images in the lateral and dorsal views are converted to trigonometric functions, whose graphical representations reproduce them with different levels of accuracy depending on the number of harmonics. A general definition of seed shape in Silene species is obtained by equations based on 40 points and 20 harmonics, while the detailed representation of individual tubercles in each seed image requires between 100 and 200 points and 60-80 harmonics depending on their number and complexity. Smooth-type seeds are accurately represented with a low number of harmonics, while rugose, echinate and papillose seeds require a higher number. Fourier equations provide information about tubercle number and distribution and allow the analysis of curvature. Further estimation of curvature values in individual tubercles reveals differences between seeds, with higher values of curvature in S. latifolia, representative of echinate seeds, and lower in S. chlorifolia with rugose seeds.
- Keywords
- Bézier curve, Elliptic Fourier Transform, complexity, curvature, development, models, morphology, seed, systematics,
- Publication type
- Journal Article MeSH
Seed morphology is an important source of information for plant taxonomy. Nevertheless, the characters under study are diverse, and a simple, unified method is lacking in the literature. A new method for the classification of seeds of the genus Silene based on optical images and image analysis has recently been described on the basis of morphological measurements of the lateral seed views. According to the outline of their silhouettes, seeds from 52 species (49 of Silene and three related species) were classified in three groups: smooth, rugose and echinate, revealing remarkable differences between these groups. This methodology has been applied here to 51 new species, making a total of 100 species of Silene analyzed so far. According to our data, a new group was described, termed papillose. The results showed morphological differences between the four mentioned seed groups, with reduced values of circularity for dorsal and lateral seed views in the papillose and echinate groups and reduced values of solidity in the papillose seeds. The method was applied to the analysis of individual as well as to average seed silhouettes and some of the differences between groups were maintained in both cases.
- Keywords
- Caryophyllaceae, circularity, convexity, echinate seeds, roundness, rugose seeds, smooth seeds, solidity of seeds,
- Publication type
- Journal Article MeSH
The description of shape in Silene seeds is based on adjectives coined by naturalists in the 19th century. The expressions reniform, dorso plana, and dorso canaliculata were applied in reference to lateral or dorsal views of seeds, but the characters described can be submitted now to an analytical description by quantitative methods, allowing shape quantification and the comparison between species or populations. A quantitative morphological analysis is based on the comparison with geometric models that adjust to the shape of seeds. Morphological analysis of the dorsal view of Silene seeds based on geometric models is applied here to 26 seed populations belonging to 12 species. According to their dorsal views, the seeds are classified as convex and non-convex. New geometric models are presented for both types, including figures such as super-ellipses and modified ellipses. The values of J index (percent of similarity of a seed image with the model) are obtained in representative seed samples from diverse populations and species. The quantitative description of seed shape based on the comparison with geometric models allows the study of variation in shape between species and in populations, as well as the identification of seeds in Silene species. The method is of application to other plant species.
- Keywords
- cardioid, convexity, geometry, model, morphology, oval, seed shape, super-ellipse, symmetry,
- Publication type
- Journal Article MeSH