Nejvíce citovaný článek - PubMed ID 33482922
Microdiversity and phylogeographic diversification of bacterioplankton in pelagic freshwater systems revealed through long-read amplicon sequencing
The SAR11-IIIb genus Fontibacterium within the order 'Ca. Pelagibacterales' is recognized for its ubiquitous presence in freshwater environments. However, cultivation limitations have hampered deeper ecophysiological understanding of this genus, with most data limited to lakes in the Northern Hemisphere. Here we present seven isolates representing two previously undescribed species, along with 93 high-quality metagenome-assembled genomes (MAGs) derived from a global survey across five continents. Phylogenomic analysis revealed 16 species forming nine distinct biogeographic clusters, indicating speciation patterns linked to water temperature and latitude. We observed endemic species restricted to African lakes, and quasi-endemic species confined to the Northern or Southern Hemisphere, which co-exist alongside cosmopolitan species. Metabolic profiling and growth experiments uncovered species- and strain-specific adaptations for nutrient uptake, along with unique pathways for sulfur metabolism. These findings provide a global-scale genomic and ecological overview for this underexplored lineage of freshwater SAR11.
- Publikační typ
- časopisecké články MeSH
Low-GC Actinobacteriota of the order 'Ca. Nanopelagicales' (also known as acI or hgcI clade) are abundant in freshwaters around the globe. Extensive predation pressure by phages has been assumed to be the reason for their high levels of microdiversity. So far, however, only a few metagenome-assembled phages have been proposed to infect them and no phages have been isolated. Taking advantage of recent advances in the cultivation of 'Ca. Nanopelagicales' we isolated a novel species of its genus 'Ca. Planktophila'. Using this isolate as bait, we cultivated the first two phages infecting this abundant bacterial order. Both genomes contained a whiB-like transcription factor and a RNA polymerase sigma-70 factor, which might aid in manipulating their host's metabolism. Both phages encoded a glycosyltransferase and one an anti-restriction protein, potential means to evade degradation of their DNA by nucleases present in the host genome. The two phage genomes shared only 6% of their genome with their closest relatives, with whom they form a previously uncultured family of actinophages within the Caudoviricetes. Read recruitment analyses against globally distributed metagenomes revealed the endemic distribution of this group of phages infecting 'Ca. Nanopelagicales'. The recruitment pattern against metagenomes from the isolation site and the modular distribution of shared genes between the two phages indicate high levels of horizontal gene transfer, likely mirroring the microdiversity of their host in the evolutionary arms race between host and phage.
BACKGROUND: Planktonic microbial communities have critical impacts on the pelagic food web and water quality status in freshwater ecosystems, yet no general model of bacterial community assembly linked to higher trophic levels and hydrodynamics has been assessed. In this study, we utilized a 2-year survey of planktonic communities from bacteria to zooplankton in three freshwater reservoirs to investigate their spatiotemporal dynamics. RESULTS: We observed site-specific occurrence and microdiversification of bacteria in lacustrine and riverine environments, as well as in deep hypolimnia. Moreover, we determined recurrent bacterial seasonal patterns driven by both biotic and abiotic conditions, which could be integrated into the well-known Plankton Ecology Group (PEG) model describing primarily the seasonalities of larger plankton groups. Importantly, bacteria with different ecological potentials showed finely coordinated successions affiliated with four seasonal phases, including the spring bloom dominated by fast-growing opportunists, the clear-water phase associated with oligotrophic ultramicrobacteria, the summer phase characterized by phytoplankton bloom-associated bacteria, and the fall/winter phase driven by decay-specialists. CONCLUSIONS: Our findings elucidate the major principles driving the spatiotemporal microbial community distribution in freshwater ecosystems. We suggest an extension to the original PEG model by integrating new findings on recurrent bacterial seasonal trends. Video Abstract.
- Klíčová slova
- Freshwater reservoirs, Microbial communities, Microdiversity, PEG model, Spatiotemporal dynamics,
- MeSH
- Bacteria genetika MeSH
- ekosystém * MeSH
- fytoplankton MeSH
- plankton * MeSH
- roční období MeSH
- zooplankton MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH