Nejvíce citovaný článek - PubMed ID 33514858
Colonization and genetic diversification processes of Leishmania infantum in the Americas
BACKGROUND: The present study investigates implications of a sub-chromosomal deletion in Leishmania infantum strains, the causative agent of American Visceral Leishmaniasis (AVL). Primarily found in New World strains, the deletion leads to the absence of the ecto-3'-nucleotidase/nuclease enzyme, impacting parasite virulence, pathogenicity, and drug susceptibility. The factors favoring prevalence and the widespread geographic distribution of these deleted mutant parasites (DEL) in the NW (NW) are discussed under the generated data. METHODS: We conducted phenotypic assessments of the sub-chromosomal deletion through in vitro assays with axenic parasites and experimental infections in both in vitro and in vivo models of vertebrate and invertebrate hosts using geographically diverse mutant field isolates. RESULTS: Despite reduced pathogenicity, the DEL strains efficiently infect vertebrate hosts and exhibit relevant differences, including enhanced metacyclogenesis and colonization rates in sand flies, potentially facilitating transmission. This combination may represent a more effective way to maintain and disperse the transmission cycle of DEL strains. CONCLUSIONS: Phenotypic assessments reveal altered parasite fitness, with potential enhanced transmissibility at the population level. Reduced susceptibility of DEL strains to miltefosine, a key drug in VL treatment, further complicates control efforts. The study underscores the importance of typing parasite genomes for surveillance and control, advocating for the sub-chromosomal deletion as a molecular marker in AVL management.
Sand fly transmitted Leishmania species are responsible for severe, wide ranging, visceral and cutaneous leishmaniases. Genetic exchange can occur among natural Leishmania populations and hybrids can now be produced experimentally, with limitations. Feeding Phlebotomus orientalis or Phlebotomus argentipes on two strains of Leishmania donovani yielded hybrid progeny, selected using double drug resistance and fluorescence markers. Fluorescence activated cell sorting of cultured clones derived from these hybrids indicated diploid progeny. Multilocus sequence typing of the clones showed hybridisation and nuclear heterozygosity, although with inheritance of single haplotypes in a kinetoplastid target. Comparative genomics showed diversity of clonal progeny between single chromosomes, and extraordinary heterozygosity across all 36 chromosomes. Diversity between progeny was seen for the HASPB antigen, which has been noted previously as having implications for design of a therapeutic vaccine. Genomic diversity seen among Leishmania strains and hybrid progeny is of great importance in understanding the epidemiology and control of leishmaniasis. As an outcome of this study we strongly recommend that wider biological archives of different Leishmania species from endemic regions should be established and made available for comparative genomics. However, in parallel, performance of genetic crosses and genomic comparisons should give fundamental insight into the specificity, diversity and limitations of candidate diagnostics, vaccines and drugs, for targeted control of leishmaniasis.
- MeSH
- genomika MeSH
- křížení genetické MeSH
- Leishmania donovani * genetika MeSH
- leishmanióza kožní * MeSH
- leishmanióza viscerální * diagnóza prevence a kontrola epidemiologie MeSH
- Phlebotomus * genetika MeSH
- Psychodidae * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH