Nejvíce citovaný článek - PubMed ID 33607254
Antibiotic susceptibility screening of primate-associated Clostridium ventriculi
Sarcina spp. has been isolated from the gastrointestinal tracts of diverse mammalian hosts. Their presence is often associated with host health complications, as is evident from many previously published medical case reports. However, only a handful of studies have made proper identification. Most other identifications were solely based on typical Sarcina-like morphology without genotyping. Therefore, the aim of this work was culture detection and the taxonomic classification of Sarcina isolates originating from different mammalian hosts. Sarcina-like colonies were isolated and collected during cultivation analyses of animal fecal samples (n = 197) from primates, dogs, calves of domestic cattle, elephants, and rhinoceroses. The study was carried out on apparently healthy animals kept in zoos or by breeders in the Czech Republic and Slovakia. Selected isolates were identified and compared using 16S rRNA gene sequencing and multi-locus sequence analysis (MLSA; Iles, pheT, pyrG, rplB, rplC, and rpsC). The results indicate the taxonomic variability of Sarcina isolates. S. ventriculi appears to be a common gut microorganism in various captive primates. In contrast, a random occurrence was also recorded in dogs. However, dog isolate N13/4e could represent the next potential novel Sarcina taxonomic unit. Also, a potentially novel Sarcina species was found in elephants, with occurrences in all tested hosts. S. maxima isolates were detected rarely, only in rhinoceroses. Although Sarcina bacteria are often linked to lethal diseases, our results indicate that Sarcina spp. appear to be a common member of the gut microbiota and seem to be an opportunistic pathogen. Further characterization and pathogenic analyses are required.
- Klíčová slova
- Sarcina spp., animals, cultivation, mammalians, microbiota, taxonomy,
- Publikační typ
- časopisecké články MeSH
Bifidobacteria, which commonly inhabit the primate gut, are beneficial contributors to host wellbeing. Anatomical differences and natural habitat allow an arrangement of primates into two main parvorders; New World monkeys (NWM) and Old World monkeys (OWM). The number of newly described bifidobacterial species is clearly elevated in NWM. This corresponds to our finding that bifidobacteria were the dominant group of cultivated gut anaerobes in NWM, while their numbers halved in OWM and were often replaced by Clostridiaceae with sarcina morphology. We examined an extended MALDI-TOF MS database as a potential identification tool for rapid screening of bifidobacterial distribution in captive primates. Bifidobacterial isolates of NWM were assigned mainly to species of primate origin, while OWM possessed typically multi-host bifidobacteria. Moreover, bifidobacterial counts reflected the feed specialization of captive primates decreasing from frugivore-insectivores, gummivore-insectivores, frugivore-folivores to frugivore-omnivores. Amplicon sequencing analysis supported this trend with regards to the inverse ratio of Actinobacteria and Firmicutes. In addition, a significantly higher diversity of the bacterial population in OWM was found. The evolution specialization of primates seems to be responsible for Bifidobacterium abundance and species occurrence. Balanced microbiota of captive primates could be supported by optimized prebiotic and probiotic stimulation based on the primate host.
- MeSH
- Bifidobacterium genetika izolace a purifikace MeSH
- feces mikrobiologie MeSH
- mikrobiota * MeSH
- primáti mikrobiologie MeSH
- probiotika MeSH
- RNA ribozomální 16S genetika MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH