Most cited article - PubMed ID 33647729
On the limits of finite element models created from (micro)CT datasets and used in studies of bone-implant-related biomechanical problems
This study investigated the biomechanical behavior of four different screw configurations used to fix comminuted proximal ulna fractures with a locking compression plate (LCP), via a detailed finite element model based on realistic anatomical geometry. The model incorporated realistic anatomical geometry including both cortical and cancellous bone, soft tissue constraints, and loading conditions representing the physiological self-weight of the forearm, with the humerus fixed at its proximal end. The stress distribution on the plate, strain intensity within the bone tissue, and interfragmentary motion (IFM) between fracture fragments were evaluated for each configuration. The results indicate that all the tested configurations provide adequate stability under normal loading conditions, with no risk of material failure. However, excessive stress concentrations were observed in specific screw regions depending on the configuration, particularly when proximal screws anchoring the olecranon (e.g. screws 2 and 3 in Variant 3) were omitted. Strain analysis revealed moderate physiological bone loading across variants, whereas IFM assessment highlighted the importance of securing the coronoid and apical fragments to prevent compromised healing. These findings suggest that a specific reductions in osteosynthetic material, such as omitting certain diaphyseal screws while maintaining crucial olecranon and coronoid fixation, may provide sufficient fracture stabilisation under the modelled conditions, potentially minimising implant-related complications. This modelling approach offers a valuable tool for preclinical assessment of osteosynthesis strategies and supports future comparative research on fixation methods with varying biomechanical properties.
- Keywords
- Elbow joint, Finite element analysis, Interfragmentary motion, Locking compression plate, Olecranon fracture, Proximal ulna comminuted fracture,
- Publication type
- Journal Article MeSH
BACKGROUND AND OBJECTIVES: Curettage is the removal of a tumor from the bone while preserving the surrounding healthy cortical bone, and is associated with higher rates of local recurrence. To lower these rates, curettage should be combined with local adjuvants, although their use is associated with damage to nearby healthy bone. OBJECTIVE: The purpose of this analysis is to determine the effect of local adjuvants on cortical porcine bone by using micro-computed tomography (micro-CT) along with histological and mechanical examination. METHODS: Local adjuvants were applied to porcine specimens under defined conditions. To assess changes in bone mineral density (BMD), a micro-CT scan was used. The pixel gray values of the volume of interest (VOI) were evaluated per specimen and converted to BMD values. The Vickers hardness test was employed to assess bone hardness (HV). The depth of necrosis was measured histologically using hematoxylin and eosin-stained tissue sections. RESULTS: A noticeable change in BMD was observed on the argon beam coagulation (ABC) sample. Comparable hardness values were measured on samples following electrocautery and ABC, and lowering of bone hardness was obtained in the case of liquid nitrogen. Extensive induced depth of necrosis was registered in the specimen treated with liquid nitrogen. CONCLUSION: This study determined the effect of local adjuvants on cortical bone by using micro-CT along with histological and mechanical examination. Phenolization and liquid nitrogen application caused a decrease in bone hardness. The bone density was affected in the range of single-digit percentage values. Liquid nitrogen induced extensive depth of necrosis with a wide variance of values.
- Keywords
- Bone hardness, Bone necrosis, Giant cell tumor of bone, Local adjuvants, Micro-CT,
- MeSH
- Cortical Bone * pathology diagnostic imaging surgery drug effects MeSH
- Bone Density * drug effects MeSH
- Curettage * methods MeSH
- Bone Neoplasms * surgery pathology MeSH
- Swine MeSH
- X-Ray Microtomography * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Total knee arthroplasty (TKA) with all-polyethylene tibial (APT) components has shown comparable survivorship and clinical outcomes to that with metal-backed tibial (MBT). Although MBT is more frequently implanted, APT equivalents are considered a low-cost variant for elderly patients. A biomechanical analysis was assumed to be suitable to compare the response of the periprosthetic tibia after implantation of TKA NexGen APT and MBT equivalent. METHODS: A standardised load model was used representing the highest load achieved during level walking. The geometry and material models were created using computed tomography data. In the analysis, a material model was created that represents a patient with osteopenia. RESULTS: The equivalent strain distribution in the models of cancellous bone with an APT component showed values above 1000 με in the area below the medial tibial section, with MBT component were primarily localised in the stem tip area. For APT variants, the microstrain values in more than 80% of the volume were in the range from 300 to 1500 με, MBT only in less than 64% of the volume. CONCLUSION: The effect of APT implantation on the periprosthetic tibia was shown as equal or even superior to that of MBT despite maximum strain values occurring in different locations. On the basis of the strain distribution, the state of the bone tissue was analysed to determine whether bone tissue remodelling or remodelling would occur. Following clinical validation, outcomes could eventually modify the implant selection criteria and lead to more frequent implantation of APT components.
- Keywords
- All-polyethylene tibial component, Computational modeling, FEA, Finite element method, Knee replacement, Metal-backed tibial component, TKR, Total knee arthroplasty,
- MeSH
- Finite Element Analysis MeSH
- Metals MeSH
- Humans MeSH
- Polyethylene MeSH
- Prosthesis Design MeSH
- Knee Prosthesis * MeSH
- Aged MeSH
- Tibia diagnostic imaging surgery MeSH
- Arthroplasty, Replacement, Knee * MeSH
- Check Tag
- Humans MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Metals MeSH
- Polyethylene MeSH