Nejvíce citovaný článek - PubMed ID 33656884
Comparative Study of DSC-Based Protocols for API-Polymer Solubility Determination
The quantum mechanics-aided COSMO-SAC activity coefficient model is applied and systematically examined for predicting the thermodynamic compatibility of drugs and polymers. The drug-polymer compatibility is a key aspect in the rational selection of optimal polymeric carriers for pharmaceutical amorphous solid dispersions (ASD) that enhance drug bioavailability. The drug-polymer compatibility is evaluated in terms of both solubility and miscibility, calculated using standard thermodynamic equilibrium relations based on the activity coefficients predicted by COSMO-SAC. As inherent to COSMO-SAC, our approach relies only on quantum-mechanically derived σ-profiles of the considered molecular species and involves no parameter fitting to experimental data. All σ-profiles used were determined in this work, with those of the polymers being derived from their shorter oligomers by replicating the properties of their central monomer unit(s). Quantitatively, COSMO-SAC achieved an overall average absolute deviation of 13% in weight fraction drug solubility predictions compared to experimental data. Qualitatively, COSMO-SAC correctly categorized different polymer types in terms of their compatibility with drugs and provided meaningful estimations of the amorphous-amorphous phase separation. Furthermore, we analyzed the sensitivity of the COSMO-SAC results for ASD to different model configurations and σ-profiles of polymers. In general, while the free volume and dispersion terms exerted a limited effect on predictions, the structures of oligomers used to produce σ-profiles of polymers appeared to be more important, especially in the case of strongly interacting polymers. Explanations for these observations are provided. COSMO-SAC proved to be an efficient method for compatibility prediction and polymer screening in ASD, particularly in terms of its performance-cost ratio, as it relies only on first-principles calculations for the considered molecular species. The open-source nature of both COSMO-SAC and the Python-based tool COSMOPharm, developed in this work for predicting the API-polymer thermodynamic compatibility, invites interested readers to explore and utilize this method for further research or assistance in the design of pharmaceutical formulations.
- Klíčová slova
- COSMO-SAC, amorphous solid dispersions (ASD), drug−polymer thermodynamic compatibility, miscibility, prediction, quantum mechanics, solubility,
- MeSH
- farmaceutická chemie metody MeSH
- léčivé přípravky chemie MeSH
- nosiče léků chemie MeSH
- polymery * chemie MeSH
- rozpustnost * MeSH
- termodynamika * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- léčivé přípravky MeSH
- nosiče léků MeSH
- polymery * MeSH
The bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs) can be improved via the formulation of an amorphous solid dispersion (ASD), where the API is incorporated into a suitable polymeric carrier. Optimal carriers that exhibit good compatibility (i.e., solubility and miscibility) with given APIs are typically identified through experimental means, which are routinely labor- and cost-inefficient. Therefore, the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state, a popular thermodynamic model in pharmaceutical applications, is examined in terms of its performance regarding the computational pure prediction of API-polymer compatibility based on activity coefficients (API fusion properties were taken from experiments) without any binary interaction parameters fitted to API-polymer experimental data (that is, kij = 0 in all cases). This kind of prediction does not need any experimental binary information and has been underreported in the literature so far, as the routine modeling strategy used in the majority of the existing PC-SAFT applications to ASDs comprised the use of nonzero kij values. The predictive performance of PC-SAFT was systematically and thoroughly evaluated against reliable experimental data for almost 40 API-polymer combinations. We also examined the effect of different sets of PC-SAFT parameters for APIs on compatibility predictions. Quantitatively, the total average error calculated over all systems was approximately 50% in the weight fraction solubility of APIs in polymers, regardless of the specific API parametrization. The magnitude of the error for individual systems was found to vary significantly from one system to another. Interestingly, the poorest results were obtained for systems with self-associating polymers such as poly(vinyl alcohol). Such polymers can form intramolecular hydrogen bonds, which are not accounted for in the PC-SAFT variant routinely applied to ASDs (i.e., that used in this work). However, the qualitative ranking of polymers with respect to their compatibility with a given API was reasonably predicted in many cases. It was also predicted correctly that some polymers always have better compatibility with the APIs than others. Finally, possible future routes to improve the cost-performance ratio of PC-SAFT in terms of parametrization are discussed.
- Klíčová slova
- PC-SAFT, amorphous solid dispersions, compatibility, drugs, polymers, prediction, solubility,
- MeSH
- léčivé přípravky MeSH
- polymery * chemie MeSH
- příprava léků MeSH
- rozpustnost MeSH
- termodynamika MeSH
- voda * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- léčivé přípravky MeSH
- polymery * MeSH
- voda * MeSH
Prediction of compatibility of the active pharmaceutical ingredient (API) with the polymeric carrier plays an essential role in designing drug delivery systems and estimating their long-term physical stability. A key element in deducing API-polymer compatibility is knowledge of a complete phase diagram, i.e., the solubility of crystalline API in polymer and mutual miscibility of API and polymer. In this work, the phase behavior of ibuprofen (IBU) with different grades of poly(D,L-lactide-co-glycolide) (PLGA) and polylactide (PLA), varying in composition of PLGA and molecular weight of PLGA and PLA, was investigated experimentally using calorimetry and computationally by the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EOS). The phase diagrams constructed based on a PC-SAFT EOS modeling optimized using the solubility data demonstrated low solubility at typical storage temperature (25 °C) and limited miscibility (i.e., presence of the amorphous-amorphous phase separation region) of IBU with all polymers studied. The ability of PC-SAFT EOS to capture the experimentally observed trends in the phase behavior of IBU-PLA/PLGA systems with respect to copolymer composition and molecular weight was thoroughly investigated and evaluated.
- Klíčová slova
- API–polymer compatibility, PC-SAFT, PLA, PLGA, amorphous solid dispersion, biodegradable polymers, phase diagrams,
- Publikační typ
- časopisecké články MeSH