Most cited article - PubMed ID 33666610
Tuning the P-C dative/covalent bond formation in R3P-C60 complexes by changing the R group
The binding free energy of hydrogen-bonded complexes is generally inversely proportional to the solvent dielectric constant. This occurs because the solvent-accessible surface area of the complex is always smaller than that of the individual subsystems, leading to a reduction in solvation energy. The present study explores the potential for stabilizing hydrogen-bonded complexes in a solvent with higher polarity. Contrary to the established understanding, we have demonstrated that the hydrogen-bonded complex (CH3CH2COOH⋅⋅⋅2,4,6-trimethylpyridine) can be better stabilized in a solvent with higher polarity. In this case, a significant charge transfer between the subsystems results in an increased dipole moment of the complex, leading to its stabilization in a more polar solvent. The expected inverse relationship between binding free energy and solvent dielectric constant is observed when the charge transfer between the subsystems is low. Thus, the magnitude of the charge transfer between subsystems is possibly the key factor in determining the stabilization or destabilization of H-bonded complexes in different solvents. Here, we present a comprehensive study that combines experimental and theoretical approaches, including nuclear magnetic resonance (NMR), infrared (IR) spectroscopies and quantum chemical calculations to validate the findings.
- Keywords
- Hydrogen bonding, IR, Metadynamics, Micro-solvation, NMR, ONIOM, Solvent effect,
- Publication type
- Journal Article MeSH
It is generally expected that a solvent has only marginal effect on the stability of a covalent bond. In this work, we present a combined computational and experimental study showing a surprising stabilization of the covalent/dative bond in Me3NBH3 complex with increasing solvent polarity. The results show that for a given complex, its stability correlates with the strength of the bond. Notably, the trends in calculated changes of binding (free) energies, observed with increasing solvent polarity, match the differences in the solvation energies (ΔEsolv) of the complex and isolated fragments. Furthermore, the studies performed on the set of the dative complexes, with different atoms involved in the bond, show a linear correlation between the changes of binding free energies and ΔEsolv. The observed data indicate that the ionic part of the combined ionic-covalent character of the bond is responsible for the stabilizing effects of solvents.
- MeSH
- Ions MeSH
- Solvents * chemistry MeSH
- Thermodynamics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ions MeSH
- Solvents * MeSH