Most cited article - PubMed ID 33801681
Redox Homeostasis in Pancreatic β-Cells: From Development to Failure
Redox status plays a multifaceted role in the intricate physiology and pathology of pancreatic beta-cells, the pivotal regulators of glucose homeostasis through insulin secretion. They are highly responsive to changes in metabolic cues where reactive oxygen species are part of it, all arising from nutritional intake. These molecules not only serve as crucial signaling intermediates for insulin secretion but also participate in the nuanced heterogeneity observed within the beta-cell population. A central aspect of beta-cell redox biology revolves around the localized production of hydrogen peroxide and the activity of NADPH oxidases which are tightly regulated and serve diverse physiological functions. Pancreatic beta-cells possess a remarkable array of antioxidant defense mechanisms although considered relatively modest compared to other cell types, are efficient in preserving redox balance within the cellular milieu. This intrinsic antioxidant machinery operates in concert with redox-sensitive signaling pathways, forming an elaborate redox relay system essential for beta-cell function and adaptation to changing metabolic demands. Perturbations in redox homeostasis can lead to oxidative stress exacerbating insulin secretion defect being a hallmark of type 2 diabetes. Understanding the interplay between redox signaling, oxidative stress, and beta-cell dysfunction is paramount for developing effective therapeutic strategies aimed at preserving beta-cell health and function in individuals with type 2 diabetes. Thus, unraveling the intricate complexities of beta-cell redox biology presents exciting avenues for advancing our understanding and treatment of metabolic disorders.
- MeSH
- Insulin-Secreting Cells * metabolism MeSH
- Diabetes Mellitus, Type 2 metabolism MeSH
- Homeostasis physiology MeSH
- Insulin metabolism MeSH
- Humans MeSH
- Oxidation-Reduction * MeSH
- Oxidative Stress * physiology MeSH
- Reactive Oxygen Species metabolism MeSH
- Insulin Secretion physiology MeSH
- Signal Transduction physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Insulin MeSH
- Reactive Oxygen Species MeSH
Cysteine is one of the least abundant but most conserved amino acid residues in proteins, playing a role in their structure, metal binding, catalysis, and redox chemistry. Thiols present in cysteines can be modified by post-translational modifications like sulfenylation, acylation, or glutathionylation, regulating protein activity and function and serving as signals. Their modification depends on their position in the structure, surrounding amino acids, solvent accessibility, pH, etc. The most studied modifications are the redox modifications by reactive oxygen, nitrogen, and sulfur species, leading to reversible changes that serve as cell signals or irreversible changes indicating oxidative stress and cell damage. Selected antioxidants undergoing reversible oxidative modifications like peroxiredoxin-thioredoxin system are involved in a redox-relay signaling that can propagate to target proteins. Cysteine thiols can also be modified by acyl moieties' addition (derived from lipid metabolism), resulting in protein functional modification or changes in protein anchoring in the membrane. In this review, we update the current knowledge on cysteine modifications and their consequences in pancreatic β-cells. Because β-cells exhibit well-balanced redox homeostasis, the redox modifications of cysteines here serve primarily for signaling purposes. Similarly, lipid metabolism provides regulatory intermediates that have been shown to be necessary in addition to redox modifications for proper β-cell function and, in particular, for efficient insulin secretion. On the contrary, the excess of reactive oxygen, nitrogen, and sulfur species and the imbalance of lipids under pathological conditions cause irreversible changes and contribute to oxidative stress leading to cell failure and the development of type 2 diabetes.
- Keywords
- cysteine, pancreatic beta cells, posttranslational modifications, redox signaling, thiol,
- MeSH
- Insulin-Secreting Cells * metabolism MeSH
- Cysteine chemistry MeSH
- Diabetes Mellitus, Type 2 * MeSH
- Oxygen MeSH
- Humans MeSH
- Signal Transduction MeSH
- Sulfhydryl Compounds metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Cysteine MeSH
- Oxygen MeSH
- Sulfhydryl Compounds MeSH
Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.
- Keywords
- ATP-sensitive K+ channel, GLP-1, TRPM channels, branched-chain ketoacid oxidation, fatty acid-stimulated insulin secretion, insulin secretion, mitochondrial Ca2+ transport, pancreatic β-cell metabolism, redox signaling,
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Insulin-Secreting Cells * metabolism MeSH
- Glucose metabolism MeSH
- Insulin metabolism MeSH
- Islets of Langerhans * metabolism MeSH
- Mitochondria metabolism MeSH
- NAD metabolism MeSH
- NADP metabolism MeSH
- Insulin Secretion MeSH
- Secretagogues metabolism MeSH
- Calcium metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
- Glucose MeSH
- Insulin MeSH
- NAD MeSH
- NADP MeSH
- Secretagogues MeSH
- Calcium MeSH