Nejvíce citovaný článek - PubMed ID 33859657
BACKGROUND: Agricultural systems are under extreme pressure to meet the global food demand, hence necessitating faster crop improvement. Rapid evaluation of the crops using novel imaging technologies coupled with robust image analysis could accelerate crops research and improvement. This proof-of-concept study investigated the feasibility of using X-ray imaging for non-destructive evaluation of rice grain traits. By analyzing 2D X-ray images of paddy grains, we aimed to approximate their key physical Traits (T) important for rice production and breeding: (1) T1 chaffiness, (2) T2 chalky rice kernel percentage (CRK%), and (3) T3 head rice recovery percentage (HRR%). In the future, the integration of X-ray imaging and data analysis into the rice research and breeding process could accelerate the improvement of global agricultural productivity. RESULTS: The study indicated, computer-vision based methods (X-ray image segmentation, features-based multi-linear models and thresholding) can predict the physical rice traits (chaffiness, CRK%, HRR%). We showed the feasibility to predict all three traits with reasonable accuracy (chaffiness: R2 = 0.9987, RMSE = 1.302; CRK%: R2 = 0.9397, RMSE = 8.91; HRR%: R2 = 0.7613, RMSE = 6.83) using X-ray radiography and image-based analytics via PCA based prediction models on individual grains. CONCLUSIONS: Our study demonstrated the feasibility to predict multiple key physical grain traits important in rice research and breeding (such as chaffiness, CRK%, and HRR%) from single 2D X-ray images of whole paddy grains. Such a non-destructive rice grain trait inference is expected to improve the robustness of paddy rice evaluation, as well as to reduce time and possibly costs for rice grain trait analysis. Furthermore, the described approach can also be transferred and adapted to other grain crops.
- Klíčová slova
- Computer vision, Image data analysis, Quality control, Rice breeding, Rice phenotyping, X-ray imaging,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: In India, raw peanuts are obtained by aggregators from smallholder farms in the form of whole pods and the price is based on a manual estimation of basic peanut pod and kernel characteristics. These methods of raw produce evaluation are slow and can result in procurement irregularities. The procurement delays combined with the lack of storage facilities lead to fungal contaminations and pose a serious threat to food safety in many regions. To address this gap, we investigated whether X-ray technology could be used for the rapid assessment of the key peanut qualities that are important for price estimation. RESULTS: We generated 1752 individual peanut pod 2D X-ray projections using a computed tomography (CT) system (CTportable160.90). Out of these projections we predicted the kernel weight and shell weight, which are important indicators of the produce price. Two methods for the feature prediction were tested: (i) X-ray image transformation (XRT) and (ii) a trained convolutional neural network (CNN). The prediction power of these methods was tested against the gravimetric measurements of kernel weight and shell weight in diverse peanut pod varieties1. Both methods predicted the kernel mass with R2 > 0.93 (XRT: R2 = 0.93 and mean error estimate (MAE) = 0.17, CNN: R2 = 0.95 and MAE = 0.14). While the shell weight was predicted more accurately by CNN (R2 = 0.91, MAE = 0.09) compared to XRT (R2 = 0.78; MAE = 0.08). CONCLUSION: Our study demonstrated that the X-ray based system is a relevant technology option for the estimation of key peanut produce indicators (Figure 1). The obtained results justify further research to adapt the existing X-ray system for the rapid, accurate and objective peanut procurement process. Fast and accurate estimates of produce value are a necessary pre-requisite to avoid post-harvest losses due to fungal contamination and, at the same time, allow the fair payment to farmers. Additionally, the same technology could also assist crop improvement programs in selecting and developing peanut cultivars with enhanced economic value in a high-throughput manner by skipping the shelling of the pods completely. This study demonstrated the technical feasibility of the approach and is a first step to realize a technology-driven peanut production system transformation of the future.
- Klíčová slova
- Convolutional neural network (CNN), Kernel weight, Peanut production, Shelling percentage, Technology-driven system transformation, X-ray,
- Publikační typ
- časopisecké články MeSH