Most cited article - PubMed ID 33864711
In vitro antifungal susceptibility patterns of Trichophyton benhamiae complex isolates from diverse origin
Trichophyton erinacei is a main cause of dermatophytosis in hedgehogs and is increasingly reported from human infections worldwide. This pathogen was originally described in the European hedgehog (Erinaceus europaeus) but is also frequently found in the African four-toed hedgehog (Atelerix albiventris), a popular pet animal worldwide. Little is known about the taxonomy and population genetics of this pathogen despite its increasing importance in clinical practice. Notably, whether there are different populations or even cryptic species associated with different hosts or geographic regions is not known. To answer these questions, we collected 161 isolates, performed phylogenetic and population-genetic analyses, determined mating-type, and characterised morphology and physiology. Multigene phylogeny and microsatellite analysis supported T. erinacei as a monophyletic species, in contrast to highly incongruent single-gene phylogenies. Two main subpopulations, one specific mainly to Atelerix and second to Erinaceus hosts, were identified inside T. erinacei, and slight differences in the size of microconidia and antifungal susceptibilities were observed among them. Although the process of speciation into two lineages is ongoing in T. erinacei, there is still gene flow between these populations. Thus, we present T. erinacei as a single species, with notable intraspecies variability in genotype and phenotype. The data from wild hedgehogs indicated that sexual reproduction in T. erinacei and de novo infection of hedgehogs from soil are probably rare events and that clonal horizontal spread strongly dominates. The molecular typing approach used in this study represents a suitable tool for further epidemiological surveillance of this emerging pathogen in both animals and humans. The results of this study also highlighted the need to use a multigene phylogeny ideally in combination with other independent molecular markers to understand the species boundaries of dermatophytes. Citation: Čmoková A, Kolařík M, Guillot J, et al. 2022. Host-driven subspeciation in the hedgehog fungus, Trichophyton erinacei, an emerging cause of human dermatophytosis. Persoonia 48: 203-218. https://doi.org/10.3767/persoonia.2022.48.06.
Pathogens from the Trichophyton benhamiae complex are one of the most important causes of animal mycoses with significant zoonotic potential. In light of the recently revised taxonomy of this complex, we retrospectively identified 38 Trichophyton isolates that could not be resolved into any of the existing species. These strains were isolated from Iranian and Czech patients during molecular epidemiological surveys on dermatophytosis and were predominantly associated with highly inflammatory tinea corporis cases, suggesting possible zoonotic etiology. Subsequent phylogenetic (4 markers), population genetic (10 markers), and phenotypic analyses supported recognition of two novel species. The first species, Trichophyton persicum sp. nov., was identified in 36 cases of human dermatophytosis and one case of feline dermatophytosis, mainly in Southern and Western Iran. The second species, Trichophyton spiraliforme sp. nov., is only known from a single case of tinea corporis in a Czech patient who probably contracted the infection from a dog. Although the zoonotic sources of infections summarized in this study are very likely, little is known about the host spectrum of these pathogens. Awareness of these new pathogens among clinicians should refine our knowledge about their poorly explored geographic distribution. IMPORTANCE In this study, we describe two novel agents of dermatophytosis and summarize the clinical manifestation of infections. These new pathogens were discovered thanks to long-term molecular epidemiological studies conducted in Czechia and Iran. Zoonotic origins of the human infections are highly probable, but the animal hosts of these pathogens are poorly known. Further research is needed to refine our knowledge about these new dermatophytes.
- Keywords
- Trichophyton benhamiae complex, dermatophytosis, molecular epidemiology, multigene phylogeny, skin mycoses, zoonotic infections, zoophilic dermatophytes,
- MeSH
- Child MeSH
- Adult MeSH
- Phylogeny MeSH
- Cats MeSH
- Middle Aged MeSH
- Humans MeSH
- Microsatellite Repeats genetics MeSH
- Adolescent MeSH
- Young Adult MeSH
- Cat Diseases microbiology transmission MeSH
- Dog Diseases microbiology transmission MeSH
- Cattle Diseases microbiology transmission MeSH
- Child, Preschool MeSH
- Dogs MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Cattle MeSH
- Tinea epidemiology microbiology transmission MeSH
- Trichophyton classification genetics isolation & purification MeSH
- Zoonoses microbiology transmission MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Cats MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Dogs MeSH
- Aged MeSH
- Cattle MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Iran epidemiology MeSH