Nejvíce citovaný článek - PubMed ID 33923728
NTRK Fusion Genes in Thyroid Carcinomas: Clinicopathological Characteristics and Their Impacts on Prognosis
Thyroid cancer is associated with a broad range of different mutations, including RET (rearranged during transfection) fusion genes. The importance of characterizing RET fusion-positive tumors has recently increased due to the possibility of targeted treatment. The aim of this study was to identify RET fusion-positive thyroid tumors, correlate them with clinicopathological features, compare them with other mutated carcinomas, and evaluate long-term follow-up of patients. The cohort consisted of 1564 different thyroid tissue samples (including 1164 thyroid carcinoma samples) from pediatric and adult patients. Samples were analyzed for known driver mutations occurring in thyroid cancer. Negative samples were subjected to extensive RET fusion gene analyses using next-generation sequencing and real-time PCR. RET fusion genes were not detected in any low-risk neoplasm or benign thyroid tissue and were detected only in papillary thyroid carcinomas (PTCs), in 113/993 (11.4%) patients, three times more frequently in pediatric and adolescent patients (29.8%) than in adult patients (8.7%). A total of 20 types of RET fusions were identified. RET fusion-positive carcinomas were associated with aggressive tumor behavior, including high rates of lymph node (75.2%) and distant metastases (18.6%), significantly higher than in NTRK fusion, BRAF V600E and RAS-positive carcinomas. Local and distant metastases were also frequently found in patients with microcarcinomas positive for the RET fusions. 'True recurrences' occurred rarely (2.4%) and only in adult patients. The 2-, 5-, 10-year disease-specific survival rates were 99%, 96%, and 95%, respectively. RET fusion-positive carcinomas were associated with high invasiveness and metastatic activity, but probably due to intensive treatment with low patient mortality.
- Klíčová slova
- RET, fusion gene, outcome, papillary thyroid carcinoma, rearrangement,
- MeSH
- dítě MeSH
- dospělí MeSH
- karcinom * MeSH
- lidé MeSH
- mladiství MeSH
- mutace MeSH
- nádory štítné žlázy * genetika patologie MeSH
- papilární karcinom štítné žlázy MeSH
- prognóza MeSH
- protoonkogenní proteiny B-Raf genetika MeSH
- protoonkogenní proteiny c-ret genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protoonkogenní proteiny B-Raf MeSH
- protoonkogenní proteiny c-ret MeSH
- RET protein, human MeSH Prohlížeč
Carcinomas of the thyroid gland are some of the most common malignancies of the endocrine system. The causes of tumor transformation are genetic changes in genes encoding cell signaling pathways that lead to an imbalance between cell proliferation and apoptosis. Some mutations have been associated with increased tumor aggressiveness, metastatic lymph node spread, tendency to dedifferentiate, and/or reduced efficiency of radioiodine therapy. The main known genetic causes of thyroid cancer include point mutations in the BRAF, RAS, TERT, RET, and TP53 genes and the fusion genes RET/PTC, PAX8/PPAR-γ, and NTRK. Molecular genetic testing of the fine needle aspiration cytology of the thyroid tissue in the preoperative period or of the removed thyroid tissue in the postoperative period is becoming more and more common in selected institutions. Positive detection of genetic changes, thus, becomes a diagnostic and prognostic factor and a factor that determines the extent of the surgical and nonsurgical treatment. The findings of genetic research on thyroid cancer are now beginning to be applied to clinical practice. In preoperative molecular diagnostics, the aggressiveness of cancers with the most frequently occurring mutations is correlated with the extent of the planned surgical treatment (radicality of surgery, neck dissection, etc.). However, clear algorithms are not established for the majority of genetic alterations. This review aims to provide a basic overview of the findings of the most commonly occurring gene mutations in thyroid cancer and to discuss the current recommendations on the extent of surgical and biological treatment concerning preoperatively detected genetic changes.
- Klíčová slova
- FNAC, extent of surgery, fusion genes, molecular genetics, mutations, neck dissection, prognosis, surgical treatment, thyroid carcinoma,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The aim of our study was to address the potential for improvements in thyroid cancer detection in routine clinical settings using a clinical examination, the American College of Radiology Thyroid Imaging Reporting and Database System (ACR TI-RADS), and fine-needle aspiration cytology (FNAC) concurrently with molecular diagnostics. A prospective cohort study was performed on 178 patients. DNA from FNA samples was used for next-generation sequencing to identify mutations in the genes BRAF, HRAS, KRAS, NRAS, and TERT. RNA was used for real-time PCR to detect fusion genes. The strongest relevant positive predictors for malignancy were the presence of genetic mutations (p < 0.01), followed by FNAC (p < 0.01) and ACR TI-RADS (p < 0.01). Overall, FNAC, ACR TI-RADS, and genetic testing reached a sensitivity of up to 96.1% and a specificity of 88.3%, with a diagnostic odds ratio (DOR) of 183.6. Sensitivity, specificity, and DOR decreased to 75.0%, 88.9%, and 24.0, respectively, for indeterminate (Bethesda III, IV) FNAC results. FNA molecular testing has substantial potential for thyroid malignancy detection and could lead to improvements in our approaches to patients. However, clinical examination, ACR TI-RADS, and FNAC remained relevant factors.
- Klíčová slova
- ACR-TIRADS, BRAF, FNAC, RAS, TERT, fusions, molecular testing, thyroid cancer, thyroid nodule,
- Publikační typ
- časopisecké články MeSH