Most cited article - PubMed ID 34107061
Diffusion kurtosis imaging detects the time-dependent progress of pathological changes in the oral rotenone mouse model of Parkinson's disease
Background: Parkinson's disease (PD) is intricately linked to gastrointestinal inflammation and the presence of neurotoxins in the gut, integrating α-syn pathologic alterations and subsequent neurodegeneration into the brain. Objectives: This study aimed to explore the enduring impact of dextran sodium sulfate (DSS)-mediated colitis on the vulnerability of central dopaminergic neurons to subsequent rotenone exposure. Methods: To induce chronic colitis, 10-month-old C57BL/6 mice were pre-exposed to 3 cycles of 1 week of 1% (w/v) DSS administration in drinking water followed by 2 weeks of regular drinking water. After colitis induction, animals received a low dose of intragastric rotenone for the next 8 weeks, followed by testing for Parkinsonian behavior and GI phenotypes of inflammation. At the end of the 17th week, colon, brain stem, and midbrain tissue were isolated and analyzed for α-syn, inflammatory markers, and dopaminergic neuronal loss. Gut microbial composition was assessed by 16S rRNA sequencing analysis. Results: We found that chronic rotenone administration in the presence of preexisting colitis led to a further increase in colonic pro-inflammatory mediator expressions, α-syn expression, and reduced colonic tight junction protein expressions. We also found early impairment of GI functions and worsened grip strength in rotenone-exposed colitic mice. Furthermore, α-syn pathology specific to the colitic mice exposed to rotenone showed dopaminergic neurons degeneration and astroglial activation in substantia nigra and striatum, including regions of the brain stem, i.e., dorsal motor of the vagus and locus coeruleus. Finally, the result of 16S rRNA gene sequencing analysis indicated that colitic mice, after being exposed to rotenone, exhibited a discernible trend in their microbiota composition (Catenibacterium, Turicibactor, and clostridium sensue stricto 1), linking it to the development of PD. Conclusions: These findings indicate that prolonged low-dose rotenone exposure, combined with an early inflammatory intestinal milieu, provides a preconditioning effect on α-syn pathology and exerts neurodegeneration in the intragastric rotenone PD mouse model.
- Publication type
- Journal Article MeSH
The biological basis of the neurodegenerative movement disorder, Parkinson's disease (PD), is still unclear despite it being 'discovered' over 200 years ago in Western Medicine. Based on current PD knowledge, there are widely varying theories as to its pathobiology. The aim of this article was to explore some of these different theories by summarizing the viewpoints of laboratory and clinician scientists in the PD field, on the biological basis of the disease. To achieve this aim, we posed this question to thirteen "PD experts" from six continents (for global representation) and collated their personal opinions into this article. The views were varied, ranging from toxin exposure as a PD trigger, to LRRK2 as a potential root cause, to toxic alpha-synuclein being the most important etiological contributor. Notably, there was also growing recognition that the definition of PD as a single disease should be reconsidered, perhaps each with its own unique pathobiology and treatment regimen.
- Publication type
- Journal Article MeSH
- Review MeSH
Parkinson´s disease (PD) pathology progresses throughout the nervous system. Whereas motor symptoms are always present, there is a high variability in the prevalence of non-motor symptoms. It has been postulated that the progression of the pathology is based on a prion-like disease mechanism partly due to the seeding effect of endocytosed-alpha-synuclein (ASYN) on the endogenous ASYN. Here, we analyzed the role of endogenous ASYN in the progression of PD-like pathology in vivo and in vitro and compared the effect of endocytosed-ASYN as well as paraquat and rotenone on primary enteric, dopaminergic and cortical neurons from wild-type and ASYN-KO mice. Our results show that, in vivo, pathology progression did not occur in the absence of endogenous ASYN. Remarkably, the damage caused by endocytosed-ASYN, rotenone or paraquat was independent from endogenous ASYN and related to the alteration of the host´s mitochondrial membrane potential. Dopaminergic neurons were very sensitive to these noxae compared to other neuronal subtypes. These results suggest that ASYN-mitochondrial interactions play a major role in initiating the pathological process in the host neuron and endogenous ASYN is essential for the transsynaptical transmission of the pathology. Our results also suggest that protecting mitochondrial function is a valid primary therapeutic target.
- MeSH
- alpha-Synuclein * MeSH
- Dopaminergic Neurons pathology MeSH
- Mice MeSH
- Paraquat MeSH
- Parkinson Disease * pathology MeSH
- Rotenone therapeutic use MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- alpha-Synuclein * MeSH
- Paraquat MeSH
- Rotenone MeSH