Nejvíce citovaný článek - PubMed ID 34128311
Detecting Förster resonance energy transfer in living cells by conventional and spectral flow cytometry
The phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) signaling pathway is critically active in many cell types, both normal and neoplastic. Many small-molecule inhibitors targeting different levels of the PI3K/AKT pathway have been developed for cancer therapy, but their efficacy is reduced by compensatory pathway re-activation mechanisms, and their tolerability by toxic side effects. We studied this problem using cell lines representing diffuse large B-cell lymphoma (SUDHL-4 and OCI-Ly7), a genetically-encoded live-cell reporter of AKT activity, and 3 small-molecule inhibitors targeting different levels of the pathway: idelalisib (PI3Kδ), GSK2334470 (PDPK1), and ipatasertib (AKT). Half-maximal (IC50) concentrations of these inhibitors for AKT activity inhibition at 1 h, when used individually, were much lower than their IC50 values for reduction of viable cell number after 4 days. Time-course studies explained this discrepancy: AKT activity in the continuous presence of the inhibitors returned to normal after 24 h, and was supranormal after inhibitor removal. Combining all 3 inhibitors produced sustained inhibition of AKT activity, was broadly synergistic at reducing viable cell number, enabled substantially lower doses of each inhibitor to be used, and was enhanced further by the mTOR inhibitor rapamycin. Moreover, combined PDPK1 and AKT inhibition showed synergy with multiple different PI3K inhibitors. In a syngeneic mouse cell line model of lymphoma (A20), the triple combination showed antitumor activity and no evidence of toxicity. Our findings provide proof of concept suggesting further study of the safety and efficacy of low-dose multilevel PI3K/AKT pathway inhibition, for lymphoma and perhaps other cancers.
- Klíčová slova
- DLBCL, Diffuse large B-cell lymphoma, Idelalisib, Inhibitors, Ipatasertib, NHL, Non-Hodgkin lymphoma, PDPK1, PI3K/AKT pathway, Rapamycin,
- Publikační typ
- dopisy MeSH
Besides many other mutations in known cancer driver genes, mantle cell lymphoma (MCL) is characterized by recurrent genetic alterations of important regulators of the phosphoinositol-3-kinase (PI3K) cascade including PIK3CA gains and PTEN losses. To evaluate the biological and functional consequences of these aberrations in MCL, we have introduced transgenic expression of PIK3CA (PIK3CA UP) and performed knockout/knockdown of PTEN gene (PTEN KO/KD) in 5 MCL cell lines. The modified cell lines were tested for associated phenotypes including dependence on upstream B-cell receptor (BCR) signaling (by an additional BCR knockout). PIK3CA overexpression decreased the dependence of the tested MCL on prosurvival signaling from BCR, decreased levels of oxidative phosphorylation, and increased resistance to 2-deoxy-glucose, a glycolysis inhibitor. Unchanged protein kinase B (AKT) phosphorylation status and unchanged sensitivity to a battery of PI3K inhibitors suggested that PIK3CA gain might affect MCL cells in AKT-independent manner. PTEN KO was associated with a more distinct phenotype: AKT hyperphosphorylation and overactivation, increased resistance to multiple inhibitors (most of the tested PI3K inhibitors, Bruton tyrosine kinase inhibitor ibrutinib, and BCL2 inhibitor venetoclax), increased glycolytic rates with resistance to 2-deoxy-glucose, and significantly decreased dependence on prosurvival BCR signaling. Our results suggest that the frequent aberrations of the PI3K pathway may rewire associated signaling with lower dependence on BCR signaling, better metabolic and hypoxic adaptation, and targeted therapy resistance in MCL.
- MeSH
- chemorezistence genetika MeSH
- cílená molekulární terapie MeSH
- fosfatidylinositol-3-kinasy třídy I * genetika metabolismus MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- fosfohydroláza PTEN * metabolismus genetika MeSH
- lidé MeSH
- lymfom z plášťových buněk * farmakoterapie genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- receptory antigenů B-buněk metabolismus MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfatidylinositol-3-kinasy třídy I * MeSH
- fosfatidylinositol-3-kinasy MeSH
- fosfohydroláza PTEN * MeSH
- PIK3CA protein, human MeSH Prohlížeč
- protoonkogenní proteiny c-akt MeSH
- PTEN protein, human MeSH Prohlížeč
- receptory antigenů B-buněk MeSH