Most cited article - PubMed ID 34249648
Silent strokes after thoracoscopic epicardial ablation and catheter ablation for atrial fibrillation: not all lesions are permanent on follow-up magnetic resonance imaging
BACKGROUND: The prospective study assessed infarct growth rate (IGR) in acute ischemic stroke (AIS) with large vessel occlusion (LVO) after recanalization in early time window. Early IGR (EIGR) and late IGR (LIGR) were correlated with imaging and clinical data; we searched for outcome predictors. METHODS: We included 71 consecutive patients. Subjects underwent computed tomography perfusion (CTP) for ischemic core volume assessment at 99.0 minutes (median) from stroke onset, recanalization was performed at 78.0 minutes (median) from CTP. Final infarct volume (FIV) was measured on 24±2 hours imaging follow-up. EIGR was calculated as the core volume/time between stroke onset and CTP; LIGR was calculated as FIV/time between CTP and imaging follow-up. Twenty-two subjects were assessed as poor outcome, 49 as good outcome. Group differences were tested by Mann-Whitney test and χ2 test. Bayesian logistic regression models were used to predict clinical outcome, Pearson correlations for the log-transformed predictors. RESULTS: Subjects with poor outcome were older, median age 78.0 [interquartile range (IQR): 71.8, 83.8] versus 68.0 (IQR: 57.0, 73.0) years; 95% confidence interval (CI): 6.00 to 16.00; P<0.001. Their stroke severity scale was higher, median 19.0 (IQR: 16.0, 20.0) versus 15.5 (IQR: 10.8, 18.0); 95% CI: 1.00 to 6.00; P<0.001. They had higher EIGR, median 23.9 (IQR: 6.4, 104.0) versus 6.7 (IQR: 1.7, 13.0) mL/h; 95% CI: 3.26 to 53.68; P=0.002; and larger core, median 52.5 (IQR: 13.1, 148.5) versus 10.0 (IQR: 1.4, 20.0) mL; 95% CI: 11.00 to 81.00; P<0.001. In subjects with poor outcome, infarct growth continued after thrombectomy with LIGR 2.0 (IQR: 1.2, 9.7) versus 0.3 (IQR: 0.0, 0.7) mL/h; 95% CI: 1.10 to 6.10; P<0.001; resulting in larger FIV, median 186.5 (IQR: 49.3, 280.8) versus 18.5 (IQR: 8.0, 34.0) mL; 95% CI: 55.30 to 214.00; P<0.001. Strong correlations among predictors were found e.g., core and EIGR (r=0.942), LIGR and FIV (r=0.779), core and FIV (r=0.761). Clinical outcome was best predicted using data from later measurements as FIV and LIGR. CONCLUSIONS: Data from later measurements were more predictive, there was no major benefit to use growth over volume data.
- Keywords
- Computed tomography perfusion (CTP), core, infarction, progressors,
- Publication type
- Journal Article MeSH
CT perfusion (CTP) is used for the evaluation of brain tissue viability in patients with acute ischemic stroke (AIS). We studied the accuracy of three different syngo.via software (SW) settings for acute ischemic core estimation in predicting the final infarct volume (FIV). The ischemic core was defined as follows: Setting A: an area with cerebral blood flow (CBF) < 30% compared to the contralateral healthy hemisphere. Setting B: CBF < 20% compared to contralateral hemisphere. Setting C: area of cerebral blood volume (CBV) < 1.2 mL/100 mL. We studied 47 AIS patients (aged 68 ± 11.2 years) with large vessel occlusion in the anterior circulation, treated in the early time window (up to 6 h), who underwent technically successful endovascular thrombectomy (EVT). FIV was measured on MRI performed 24 ± 2 h after EVT. In general, all three settings correlated with each other; however, the absolute agreement between acute ischemic core volume on CTP and FIV on MRI was poor; intraclass correlation for all three settings was between 0.64 and 0.69, root mean square error of the individual observations was between 58.9 and 66.0. Our results suggest that using CTP syngo.via SW for prediction of FIV in AIS patients in the early time window is not appropriate.
- Keywords
- endovascular thrombectomy, magnetic resonance imaging, penumbra, stroke imaging, syngo.via,
- Publication type
- Journal Article MeSH
The absolute majority of strokes in high-income countries, roughly 91%, are of ischemic origin. This review is focused on acute ischemic stroke (AIS) with large vessel occlusion (LVO) in the anterior circulation, which is considered the most devastating subtype of AIS. Moreover, stroke survivors impose substantial direct and indirect costs of care as well as costs due to productivity loss. We review of diagnostic possibilities of individual imaging methods such as computed tomography and magnetic resonance imaging, and discuss their pros and cons in the imaging of AIS. The goals of non-invasive imaging in AIS are as follows: (a) to rule out intracranial hemorrhage and to quickly exclude hemorrhagic stroke and contraindications for intravenous thrombolysis; (b) to identify potential LVO and its localization and to quickly provide guidance for endovascular treatment; (c) to assess/estimate the volume or size of the ischemic core. We suggest fast diagnostic management, which is able to quickly satisfy the above-mentioned diagnostic goals in AIS with LVO.
- Keywords
- CT, MRI, large vessel occlusion, thrombectomy,
- Publication type
- Journal Article MeSH
- Review MeSH