Most cited article - PubMed ID 34412282
Gamma-ray flash generation in irradiating a thin foil target by a single-cycle tightly focused extreme power laser pulse
One of the remarkable phenomena in the laser-matter interaction is the extremely efficient energy transfer to [Formula: see text]-photons, that appears as a collimated [Formula: see text]-ray beam. For interactions of realistic laser pulses with matter, existence of an amplified spontaneous emission pedestal plays a crucial role, since it hits the target prior to the main pulse arrival, leading to a cloud of preplasma and drilling a narrow channel inside the target. These effects significantly alter the process of [Formula: see text]-photon generation. Here, we study this process by importing the outcome of magnetohydrodynamic simulations of the pedestal-target interaction into particle-in-cell simulations for describing the [Formula: see text]-photon generation. It is seen that target tailoring prior the laser-target interaction plays an important positive role, enhancing the efficiency of laser pulse coupling with the target, and generating high energy electron-positron pairs. It is expected that such a [Formula: see text]-photon source will be actively used in various applications in nuclear photonics, material science and astrophysical processes modelling.
- Publication type
- Journal Article MeSH
The wave breaking limit of relativistically intense electrostatic waves in an unmagnetised electronegative plasma, where electrons are alleged to attach onto neutral atoms or molecules and thus forming a significant amount of negative ions, has been studied analytically. A nonlinear theory has been developed, using one-dimensional (1D) relativistic multi-fluid model in order to study the roles of super-thermal electrons, negative ion species and the Lorentz factor, on the dynamics of the wave. A generalised kappa-type distribution function has been chosen for the velocities of the electrons, to couple the densities of the fluids. By assuming the travelling wave solution, the equation of motion for the evolution of the wave in a stationary wave frame has been derived and numerical solutions have been presented. Studies have been further extended, using standard Sagdeev pseudopotential method, to discover the maximum electric field amplitude sustained by these waves. The dependence of wave breaking limit on the different input parameters such as the Lorentz factor, electron temperature, spectral index of the electron velocity distribution and on the fraction and the mass ratio of the negative to positive ion species has been shown explicitly. The wavelength of these waves has been calculated for a wide range of input parameters and its dependence on aforementioned plasma parameters have been studied in detail. These results are relevant to understand particle acceleration and relativistic wave breaking phenomena in high intensity laser plasma experiments and space environments where the secondary ion species and super-thermal electrons exist.
- Publication type
- Journal Article MeSH