• This record comes from PubMed

Towards bright gamma-ray flash generation from tailored target irradiated by multi-petawatt laser

. 2022 Oct 13 ; 12 (1) : 17143. [epub] 20221013

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Grant support
CZ.02.1.01/0.0/0.0/15_003/0000449 European Regional Development Fund
CZ.02.1.01/0.0/0.0/15_003/0000449 European Regional Development Fund
CZ.02.1.01/0.0/0.0/15_003/0000449 European Regional Development Fund

Links

PubMed 36229461
PubMed Central PMC9561655
DOI 10.1038/s41598-022-21352-8
PII: 10.1038/s41598-022-21352-8
Knihovny.cz E-resources

One of the remarkable phenomena in the laser-matter interaction is the extremely efficient energy transfer to [Formula: see text]-photons, that appears as a collimated [Formula: see text]-ray beam. For interactions of realistic laser pulses with matter, existence of an amplified spontaneous emission pedestal plays a crucial role, since it hits the target prior to the main pulse arrival, leading to a cloud of preplasma and drilling a narrow channel inside the target. These effects significantly alter the process of [Formula: see text]-photon generation. Here, we study this process by importing the outcome of magnetohydrodynamic simulations of the pedestal-target interaction into particle-in-cell simulations for describing the [Formula: see text]-photon generation. It is seen that target tailoring prior the laser-target interaction plays an important positive role, enhancing the efficiency of laser pulse coupling with the target, and generating high energy electron-positron pairs. It is expected that such a [Formula: see text]-photon source will be actively used in various applications in nuclear photonics, material science and astrophysical processes modelling.

See more in PubMed

Strickland D, Mourou G. Compression of amplified chirped optical pulses. Opt. Commun. 1985;56:219–221. doi: 10.1016/0030-4018(85)90120-8. DOI

Danson CN, et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. 2019;7:e54. doi: 10.1017/hpl.2019.36. DOI

Tanaka KA, et al. Current status and highlights of the ELI-NP research program. Matter Radiat. at Extremes. 2020;5:024402. doi: 10.1063/1.5093535. DOI

Osvay, K. et al. Development status and operation experiences of the few cycle high average power lasers of ELI-ALPS (Conference Presentation). In Bakule, P. & Haefner, C. L. (eds.) Short-pulse High-energy Lasers and Ultrafast Optical Technologies, vol. 11034, 10.1117/12.2523057.International Society for Optics and Photonics (SPIE, 2019).

Papadopoulos D, et al. The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics. High Power Laser Sci. Eng. 2016;4:e34. doi: 10.1017/hpl.2016.34. DOI

Kiriyama H, et al. High-contrast high-intensity repetitive petawatt laser. Opt. Lett. 2018;43:2595–2598. doi: 10.1364/OL.43.002595. PubMed DOI

Yoon, J. W. et al. Realization of laser intensity over

Mourou GA, Tajima T, Bulanov SV. Optics in the relativistic regime. Rev. Mod. Phys. 2006;78:309–371. doi: 10.1103/RevModPhys.78.309. DOI

Dubietis A, Jonušauskas G, Piskarskas A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 1992;88:437–440. doi: 10.1016/0030-4018(92)90070-8. DOI

Lévy A, et al. Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses. Opt. Lett. 2007;32:310–312. doi: 10.1364/OL.32.000310. PubMed DOI

Giulietti D, et al. Production of ultracollimated bunches of multi-MeV electrons by 35 fs laser pulses propagating in exploding-foil plasmas. Phys. Plasmas. 2002;9:3655–3658. doi: 10.1063/1.1498116. DOI

Matsukado K, et al. Energetic Protons from a few-micron metallic foil evaporated by an intense laser pulse. Phys. Rev. Lett. 2003;91:215001. doi: 10.1103/PhysRevLett.91.215001. PubMed DOI

Yogo A, et al. Laser ion acceleration via control of the near-critical density target. Phys. Rev. E. 2008;77:016401. doi: 10.1103/PhysRevE.77.016401. PubMed DOI

Ogura K, et al. Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification/Ti:sapphire hybrid laser system. Opt. Lett. 2012;37:2868–2870. doi: 10.1364/OL.37.002868. PubMed DOI

Utsumi T, Matsukado K, Daido H, Esirkepov T, Bulanov S. Numerical simulation of melting and evaporation of a cold foil target irradiated by a pre-pulse. Appl. Phys. A. 2004;79:1185–1187. doi: 10.1007/s00339-004-2700-4. DOI

Esirkepov TZ, et al. Prepulse and amplified spontaneous emission effects on the interaction of a petawatt class laser with thin solid targets. Nucl. Instr. Meth. Phys. Res. A. 2014;745:150–163. doi: 10.1016/j.nima.2014.01.056. DOI

Hadjisolomou P, et al. Preplasma effects on laser ion generation from thin foil targets. Phys. Plasmas. 2020;27:013107. doi: 10.1063/1.5124457. DOI

Schwoerer H, et al. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature. 2006;439:445–448. doi: 10.1038/nature04492. PubMed DOI

Toncian T, et al. Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Science. 2006;312:410–413. doi: 10.1126/science.1124412. PubMed DOI

Kar S, et al. Dynamic control of laser-produced proton beams. Phys. Rev. Lett. 2008;100:105004. doi: 10.1103/PhysRevLett.100.105004. PubMed DOI

Burza M, et al. Hollow microspheres as targets for staged laser-driven proton acceleration. New J. Phys. 2011;13:013030. doi: 10.1088/1367-2630/13/1/013030. DOI

Kar S, et al. Guided post-acceleration of laser-driven ions by a miniature modular structure. Nat. Commun. 2016;7:10792. doi: 10.1038/ncomms10792. PubMed DOI PMC

Psikal J, Grym J, Stolcova L, Proska J. Hollow target for efficient generation of fast ions by ultrashort laser pulses. Phys. Plasmas. 2016;23:123121. doi: 10.1063/1.4972880. DOI

Hadjisolomou P, Bulanov SV, Korn G. Towards laser ion acceleration with holed targets. J. Plasma Phys. 2020;86:905860304. doi: 10.1017/S0022377820000379. DOI

Gitomer SJ, et al. Fast ions and hot electrons in the laser-plasma interaction. Phys. Fluids. 1986;29:2679–2688. doi: 10.1063/1.865510. DOI

Dorrer C, Spilatro M. Spectral and temporal shaping of spectrally incoherent pulses in the infrared and ultraviolet. Opt. Exp. 2022;30:4942–4953. doi: 10.1364/OE.449418. PubMed DOI

Borghesi M, et al. Characterization of laser plasmas for interaction studies: Progress in time-resolved density mapping. Phys. Rev. E. 1996;54:6769–6773. doi: 10.1103/PhysRevE.54.6769. PubMed DOI

Gizzi LA, et al. Enhanced laser-driven proton acceleration via improved fast electron heating in a controlled pre-plasma. Sci. Rep. 2021;11:13728. doi: 10.1038/s41598-021-93011-3. PubMed DOI PMC

Gonsalves AJ, et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 2019;122:084801. doi: 10.1103/PhysRevLett.122.084801. PubMed DOI

Nakamura T, et al. High-power PubMed DOI

Ridgers CP, et al. Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas. Phys. Plasmas. 2013;20:056701. doi: 10.1063/1.4801513. DOI

Lezhnin KV, Sasorov PV, Korn G, Bulanov SV. High power gamma flare generation in multi-petawatt laser interaction with tailored targets. Phys. Plasmas. 2018;25:123105. doi: 10.1063/1.5062849. DOI

Younis, A. H., Davidson, A., Hafizi, B. & Gordon, D. F. Diagnostic Techniques for particle-in-cell simulations of laser-produced gamma-rays in the strong-field QED regime. 2106, 16227 (2021).

Koch HW, Motz JW. Bremsstrahlung cross-section formulas and related data. Rev. Mod. Phys. 1959;31:920–955. doi: 10.1103/RevModPhys.31.920. DOI

Vyskočil J, Klimo O, Weber S. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets. Plasma Phys. Control. Fusion. 2018;60:054013. doi: 10.1088/1361-6587/aab4c3. DOI

Radier C, et al. 10 PW peak power femtosecond laser pulses at ELI-NP. High Power Laser Sci. Eng. 2022;10:e21. doi: 10.1017/hpl.2022.11. DOI

Rinderknecht HG, et al. Relativistically transparent magnetic filaments: scaling laws, initial results and prospects for strong-field QED studies. New J. Phys. 2021;23:095009. doi: 10.1088/1367-2630/ac22e7. DOI

Ehlotzky F, Krajewska K, Kamiński JZ. Fundamental processes of quantum electrodynamics in laser fields of relativistic power. Rep. Prog. Phys. 2009;72:046401. doi: 10.1088/0034-4885/72/4/046401. DOI

Ledingham KWD, et al. Photonuclear physics when a multiterawatt laser pulse interacts with solid targets. Phys. Rev. Lett. 2000;84:899–902. doi: 10.1103/PhysRevLett.84.899. PubMed DOI

Nedorezov, V. G., Turinge, A. A., & Shatunov, Y. M. Photonuclear experiments with Compton-backscattered gamma beams. Phys.-Uspekhi47, 341–358, 10.1070/pu2004v047n04abeh001743(2004).

Eliasson B, Liu CS. An electromagnetic gamma-ray free electron laser. J. Plasma Phys. 2013;79:995–998. doi: 10.1017/S0022377813000779. DOI

Rees MJ, Mészáros P. Relativistic fireballs: Energy conversion and time-scales. Mon. Not. R. Astron. Soc. 1992;258:41P–43P. doi: 10.1093/mnras/258.1.41P. DOI

Bulanov SV, et al. On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers. Plasma Phys. Rep. 2015;41:1–51. doi: 10.1134/S1063780X15010018. DOI

Philippov AA, Spitkovsky A. Ab-initio pulsar magnetosphere: Particle acceleration in oblique rotators and high-energy emission modeling. Astrophys. J. 2018;855:94. doi: 10.3847/1538-4357/aaabbc. DOI

Aharonian, F. et al. Extended very-high-energy gamma-ray emission surrounding PSR J 0622+3749 observed by LHAASO-KM2A. Phys. Rev. Lett.126, 241103. 10.1103/PhysRevLett.126.241103 (2021). PubMed

Zhidkov A, Koga J, Sasaki A, Uesaka M. Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma. Phys. Rev. Lett. 2002;88:185002. doi: 10.1103/PhysRevLett.88.185002. PubMed DOI

Koga J, Esirkepov TZ, Bulanov SV. Nonlinear Thomson scattering in the strong radiation damping regime. Phys. Plasmas. 2005;12:093106. doi: 10.1063/1.2013067. DOI

Gu YJ, Klimo O, Bulanov SV, Weber S. Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses. Commun. Phys. 2018;1:1–9. doi: 10.1038/s42005-018-0095-3. DOI

Bell AR, Kirk JG. Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 2008;101:200403. doi: 10.1103/PhysRevLett.101.200403. PubMed DOI

Kirk JG, Bell AR, Arka I. Pair production in counter-propagating laser beams. Plasma Phys. Control. Fusion. 2009;51:085008. doi: 10.1088/0741-3335/51/8/085008. DOI

Luo W, et al. Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets. Phys. Plasmas. 2015;22:063112. doi: 10.1063/1.4923265. DOI

Grismayer T, Vranic M, Martins JL, Fonseca RA, Silva LO. Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses. Phys. Plasmas. 2016;23:056706. doi: 10.1063/1.4950841. DOI

Vranic M, Grismayer T, Fonseca RA, Silva LO. Electron-positron cascades in multiple-laser optical traps. Plasma Phys. Control. Fusion. 2016;59:014040. doi: 10.1088/0741-3335/59/1/014040. DOI

Gong Z, et al. High-efficiency PubMed DOI

Ji LL, Snyder J, Shen BF. Single-pulse laser-electron collision within a micro-channel plasma target. Plasma Phys. Control. Fusion. 2019;61:065019. doi: 10.1088/1361-6587/ab1692. DOI

Zhang LQ, et al. Brilliant attosecond DOI

Sarri G, et al. Ultrahigh brilliance multi-MeV PubMed DOI

Magnusson J, et al. Laser-particle collider for multi-Gev photon production. Phys. Rev. Lett. 2019;122:254801. doi: 10.1103/PhysRevLett.122.254801. PubMed DOI

Wang XB, et al. Gamma-ray generation from ultraintense laser-irradiated solid targets with preplasma. High Power Laser Sci. Eng. 2020;8:e34. doi: 10.1017/hpl.2020.30. DOI

Tsygvintsev, I. P. Results of RHD simulation of ns-prepulse with 3DLINE code for different target materials, 10.5281/ZENODO.6412637(2022). Data come under CC BY 4.0 license.

Arber TD, et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion. 2015;57:113001. doi: 10.1088/0741-3335/57/11/113001. DOI

Higuera AV, Cary JR. Structure-preserving second-order integration of relativistic charged particle trajectories in electromagnetic fields. Phys. Plasmas. 2017;24:052104. doi: 10.1063/1.4979989. DOI

Ridgers CP, et al. Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions. J. Comput. Phys. 2014;260:273–285. doi: 10.1016/j.jcp.2013.12.007. DOI

Kodama R, et al. Fast heating scalable to laser fusion ignition. Nature. 2002;418:933–934. doi: 10.1038/418933a. PubMed DOI

Kamboj O, Ghotra HS, Thakur V, Pasley J, Kant N. Optimizing laser focal spot size using self-focusing in a cone-guided fast-ignition ICF target. Eur. Phys. J. Plus. 2021;136:484. doi: 10.1140/epjp/s13360-021-01488-8. DOI

Chintalwad S, Krishnamurthy S, Ramakrishna B, Ridgers CP. Photon emission enhancement studies from the interaction of ultraintense laser pulses with shaped targets. Phys. Rev. E. 2022;105:025205. doi: 10.1103/PhysRevE.105.025205. PubMed DOI

Budriga O, Ionel LE, Tatomirescu D, Tanaka KA. Enhancement of laser-focused intensity greater than 10 times through a re-entrant cone in the petawatt regime. Opt. Lett. 2020;45:3454–3457. doi: 10.1364/OL.395316. PubMed DOI

Badziak J, et al. Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration. Phys. Plasmas. 2012;19:053105. doi: 10.1063/1.4714660. DOI

Busold S, et al. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source. Phys. Rev. ST Accel. Beams. 2013;16:101302. doi: 10.1103/PhysRevSTAB.16.101302. DOI

Naumova N, et al. Hole boring in a DT pellet and fast-ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 2009;102:025002. doi: 10.1103/PhysRevLett.102.025002. PubMed DOI

Schlegel T, et al. Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses. Phys. Plasmas. 2009;16:083103. doi: 10.1063/1.3196845. DOI

Wilks SC, Kruer WL, Tabak M, Langdon AB. Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 1992;69:1383–1386. doi: 10.1103/PhysRevLett.69.1383. PubMed DOI

Pukhov A, Sheng ZM, Meyer-ter Vehn J. Particle acceleration in relativistic laser channels. Phys. Plasmas. 1999;6:2847–2854. doi: 10.1063/1.873242. DOI

Feit MD, Komashko AM, Rubenchik AM. Relativistic self-focusing in underdense plasma. Phys. D: Nonlinear Phenom. 2001;152–153:705–713. doi: 10.1016/S0167-2789(01)00203-2. DOI

Mangles SPD, et al. Electron acceleration in cavitated channels formed by a petawatt laser in low-density plasma. Phys. Rev. Lett. 2005;94:245001. doi: 10.1103/PhysRevLett.94.245001. DOI

von Seggern, D. H. CRC Standard Curves and Surfaces with Mathematica (Chapman and Hall / CRC, 2016).

Vshivkov VA, Naumova NM, Pegoraro F, Bulanov SV. Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil. Phys. Plasmas. 1998;5:2727–2741. doi: 10.1063/1.872961. DOI

Esirkepov T, Yamagiwa M, Tajima T. Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 2006;96:105001. doi: 10.1103/PhysRevLett.96.105001. PubMed DOI

Esberg J, et al. Experimental investigation of strong field trident production, collaboration=CERN NA63. Phys. Rev. D. 2010;82:072002. doi: 10.1103/PhysRevD.82.072002. DOI

Chen H, et al. Relativistic Quasimonoenergetic positron jets from intense laser-solid interactions. Phys. Rev. Lett. 2010;105:015003. doi: 10.1103/PhysRevLett.105.015003. PubMed DOI

Stark DJ, Toncian T, Arefiev AV. Enhanced multi-mev photon emission by a laser-driven electron beam in a self-generated magnetic field. Phys. Rev. Lett. 2016;116:185003. doi: 10.1103/PhysRevLett.116.185003. PubMed DOI

Wang T, et al. Power scaling for collimated DOI

Hadjisolomou P, et al. Gamma-ray flash in the interaction of a tightly focused single-cycle ultra-intense laser pulse with a solid target. J. Plasma Phys. 2022;88:905880104. doi: 10.1017/S0022377821001318. DOI

Zhu XL, et al. Dense GeV electron-positron pairs generated by lasers in near-critical-density plasmas. Nat. Commun. 2016;7:13686. doi: 10.1038/ncomms13686. PubMed DOI PMC

Zhu XL, Yu TP, Chen M, Weng SM, Sheng ZM. Generation of GeV positron and DOI

Wang WM, et al. Collimated ultrabright gamma rays from electron wiggling along a petawatt laser-irradiated wire in the QED regime. Proc. Natl. Acad. Sci. 2018;115:9911–9916. doi: 10.1073/pnas.1809649115. PubMed DOI PMC

Zhu XL, et al. Extremely brilliant GeV PubMed DOI PMC

Hadjisolomou P, Jeong TM, Valenta P, Korn G, Bulanov SV. Gamma-ray flash generation in irradiating a thin foil target by a single-cycle tightly focused extreme power laser pulse. Phys. Rev. E. 2021;104:015203. doi: 10.1103/PhysRevE.104.015203. PubMed DOI

Singh S, et al. Compact high energy x-ray spectrometer based on forward compton scattering for high intensity laser plasma experiments. Rev. Sci. Instrum. 2018;89:085118. doi: 10.1063/1.5040979. PubMed DOI

Singh S, et al. Bremsstrahlung emission and plasma characterization driven by moderately relativistic laser-plasma interactions. Plasma Phys. Control. Fusion. 2021;63:035004. doi: 10.1088/1361-6587/abcf7e. DOI

Hertel IV, Schulz CP. Atoms (Molecules and Optical Physics Atomic Physics and Basics of Spectroscopy. Berlin: Springer; 2008.

Gales S, et al. New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams. Phys. Scr. 2016;91:093004. doi: 10.1088/0031-8949/91/9/093004. DOI

Gales S, et al. The extreme light infrastructure-nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams. Rep. Prog. Phys. 2018;81:094301. doi: 10.1088/1361-6633/aacfe8. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...