Most cited article - PubMed ID 34489932
Roles of Macrophage Polarization and Macrophage-Derived miRNAs in Pulmonary Fibrosis
Macrophages are a specific group of cells found in all body tissues. They have specific characteristics in each of the tissues that correspond to the functional needs of the specific environment. These cells are involved in a wide range of processes, both pro-inflammatory and anti-inflammatory ("wound healing"). This is due to their specific capacity for so-called polarization, a phenotypic change that is, moreover, partially reversible compared to other differentiated cells of the human body. This promises a wide range of possibilities for its influence and thus therapeutic use. In this article, we therefore review the mechanisms that cause polarization, the basic classification of polarized macrophages, their characteristic markers and the effects that accompany these phenotypic changes. Since the study of pulmonary (and among them mainly alveolar) macrophages is currently the focus of scientific interest of many researchers and these macrophages are found in very specific environments, given mainly by the extremely high partial pressure of oxygen compared to other locations, which specifically affects their behavior, we will focus our review on this group.
- MeSH
- Anti-Inflammatory Agents * pharmacology MeSH
- Cell Differentiation physiology MeSH
- Humans MeSH
- Macrophages * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anti-Inflammatory Agents * MeSH
INTRODUCTION: Inhalation of nanomaterials may induce inflammation in the lung which if left unresolved can manifest in pulmonary fibrosis. In these processes, alveolar macrophages have an essential role and timely modulation of the macrophage phenotype is imperative in the onset and resolution of inflammatory responses. This study aimed to investigate, the immunomodulating properties of two industrially relevant high aspect ratio nanomaterials, namely nanocellulose and multiwalled carbon nanotubes (MWCNT), in an alveolar macrophage model. METHODS: MH-S alveolar macrophages were exposed at air-liquid interface to cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and two MWCNT (NM-400 and NM-401). Following exposure, changes in macrophage polarization markers and secretion of inflammatory cytokines were analyzed. Furthermore, the potential contribution of epigenetic regulation in nanomaterial-induced macrophage polarization was investigated by assessing changes in epigenetic regulatory enzymes, miRNAs, and rRNA modifications. RESULTS: Our data illustrate that the investigated nanomaterials trigger phenotypic changes in alveolar macrophages, where CNF exposure leads to enhanced M1 phenotype and MWCNT promotes M2 phenotype. Furthermore, MWCNT exposure induced more prominent epigenetic regulatory events with changes in the expression of histone modification and DNA methylation enzymes as well as in miRNA transcript levels. MWCNT-enhanced changes in the macrophage phenotype were correlated with prominent downregulation of the histone methyltransferases Kmt2a and Smyd5 and histone deacetylases Hdac4, Hdac9 and Sirt1 indicating that both histone methylation and acetylation events may be critical in the Th2 responses to MWCNT. Furthermore, MWCNT as well as CNF exposure led to altered miRNA levels, where miR-155-5p, miR-16-1-3p, miR-25-3p, and miR-27a-5p were significantly regulated by both materials. PANTHER pathway analysis of the identified miRNA targets showed that both materials affected growth factor (PDGF, EGF and FGF), Ras/MAPKs, CCKR, GnRH-R, integrin, and endothelin signaling pathways. These pathways are important in inflammation or in the activation, polarization, migration, and regulation of phagocytic capacity of macrophages. In addition, pathways involved in interleukin, WNT and TGFB signaling were highly enriched following MWCNT exposure. CONCLUSION: Together, these data support the importance of macrophage phenotypic changes in the onset and resolution of inflammation and identify epigenetic patterns in macrophages which may be critical in nanomaterial-induced inflammation and fibrosis.
- Keywords
- epigenetic, fibrosis, inflammation, macrophage, miRNA, nanomaterials, polarization,
- MeSH
- Cellulose metabolism MeSH
- Epigenesis, Genetic MeSH
- Humans MeSH
- Macrophages metabolism MeSH
- MicroRNAs * genetics metabolism MeSH
- Nanotubes, Carbon * toxicity chemistry MeSH
- Inflammation metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cellulose MeSH
- MicroRNAs * MeSH
- Nanotubes, Carbon * MeSH