Most cited article - PubMed ID 34623138
Simple and Reproducible Derivatization with Benzoyl Chloride: Improvement of Sensitivity for Multiple Lipid Classes in RP-UHPLC/MS
Chemical derivatization involves the reaction of an analyte with a derivatization agent to modify its structure, improving the peak shape, chromatographic performance, structural analysis, ionization efficiency, and sensitivity. A novel derivatization method using 3-(chlorosulfonyl)benzoic acid is developed for the determination of monoacylglycerols, diacylglycerols, free sterols, and tocopherols using the reversed-phase ultra-high-performance liquid chromatography-tandem mass spectrometry (RP-UHPLC/MS/MS) method in the negative ion mode. The chromatographic and mass spectrometric properties of derivatized lipids are investigated by using 29 lipid standards spanning four lipid classes. The derivatization process is optimized using pooled plasma spiked by 9 internal standards, achieving an optimal yield with a reaction time of 40 min at 60 °C. The stability of the derivatives is confirmed, with short-term stability maintained for 10 h at 4 °C and long-term stability preserved for 5 days at -80 °C. The repeatability and reproducibility are verified by one/two operator(s), which underscores the simplicity and robustness of the method, and calibration curves with high linear regression coefficients illustrate the accuracy of the method. The derivatization approach, which combines RP-UHPLC/MS/MS and the use of specific fragmentation patterns, significantly reduces limits of detection, reaching 15-25 pmol/mL for free sterols in plasma. The optimized method is applied to the analysis of human plasma, leading to the identification of 92 lipid species in the targeted lipid classes. This represents a substantial improvement in sensitivity and detection capabilities compared to those of previously reported methods.
Glycosphingolipids (GSL) are a highly heterogeneous class of lipids representing the majority of the sphingolipid category. GSL are fundamental constituents of cellular membranes that have key roles in various biological processes, such as cellular signaling, recognition, and adhesion. Understanding the structural complexity of GSL is pivotal for unraveling their functional significance in a biological context, specifically their crucial role in the pathophysiology of various diseases. Mass spectrometry (MS) has emerged as a versatile and indispensable tool for the structural elucidation of GSL enabling a deeper understanding of their complex molecular structures and their key roles in cellular dynamics and patholophysiology. Here, we provide a thorough overview of MS techniques tailored for the analysis of GSL, emphasizing their utility in probing GSL intricate structures to advance our understanding of the functional relevance of GSL in health and disease. The application of tandem MS using diverse fragmentation techniques, including novel ion activation methodologies, in studying glycan sequences, linkage positions, and fatty acid composition is extensively discussed. Finally, we address current challenges, such as the detection of low-abundance species and the interpretation of complex spectra, and offer insights into potential solutions and future directions by improving MS instrumentation for enhanced sensitivity and resolution, developing novel ionization techniques, or integrating MS with other analytical approaches for comprehensive GSL characterization.
- Keywords
- Derivatization, Fragmentation, Glycosphingolipids, Liquid chromatography, Mass spectrometry, Structural elucidation,
- MeSH
- Glycosphingolipids * chemistry analysis MeSH
- Mass Spectrometry * methods MeSH
- Humans MeSH
- Tandem Mass Spectrometry methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Glycosphingolipids * MeSH