Nejvíce citovaný článek - PubMed ID 34743603
Modern perspectives on near-equilibrium analysis of Turing systems
Symmetry-breaking instabilities play an important role in understanding the mechanisms underlying the diversity of patterns observed in nature, such as in Turing's reaction-diffusion theory, which connects cellular signalling and transport with the development of growth and form. Extensive literature focuses on the linear stability analysis of homogeneous equilibria in these systems, culminating in a set of conditions for transport-driven instabilities that are commonly presumed to initiate self-organisation. We demonstrate that a selection of simple, canonical transport models with only mild multistable non-linearities can satisfy the Turing instability conditions while also robustly exhibiting only transient patterns. Hence, a Turing-like instability is insufficient for the existence of a patterned state. While it is known that linear theory can fail to predict the formation of patterns, we demonstrate that such failures can appear robustly in systems with multiple stable homogeneous equilibria. Given that biological systems such as gene regulatory networks and spatially distributed ecosystems often exhibit a high degree of multistability and nonlinearity, this raises important questions of how to analyse prospective mechanisms for self-organisation.
- Klíčová slova
- Multistability, Pattern formation, Turing instabilities,
- MeSH
- biologické modely MeSH
- difuze MeSH
- ekosystém * MeSH
- genové regulační sítě MeSH
- matematické pojmy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Elucidating pattern forming processes is an important problem in the physical, chemical and biological sciences. Turing's contribution, after being initially neglected, eventually catalysed a huge amount of work from mathematicians, physicists, chemists and biologists aimed towards understanding how steady spatial patterns can emerge from homogeneous chemical mixtures due to the reaction and diffusion of different chemical species. While this theory has been developed mathematically and investigated experimentally for over half a century, many questions still remain unresolved. This theme issue places Turing's theory of pattern formation in a modern context, discussing the current frontiers in foundational aspects of pattern formation in reaction-diffusion and related systems. It highlights ongoing work in chemical, synthetic and developmental settings which is helping to elucidate how important Turing's mechanism is for real morphogenesis, while highlighting gaps that remain in matching theory to reality. The theme issue also surveys a variety of recent mathematical research pushing the boundaries of Turing's original theory to more realistic and complicated settings, as well as discussing open theoretical challenges in the analysis of such models. It aims to consolidate current research frontiers and highlight some of the most promising future directions. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.
- Klíčová slova
- Turing instabilities, pattern formation, reaction-diffusion systems,
- MeSH
- biologické modely * MeSH
- difuze MeSH
- matematika MeSH
- morfogeneze MeSH
- Publikační typ
- časopisecké články MeSH