Nejvíce citovaný článek - PubMed ID 34910614
Genomic comparisons of Escherichia coli ST131 from Australia
INTRODUCTION: Hospitals and wastewater are recognized hot spots for the selection and dissemination of antibiotic-resistant bacteria to the environment, but the total participation of hospitals in the spread of nosocomial pathogens to municipal wastewater treatment plants (WWTPs) and adjacent rivers had not previously been revealed. METHODS: We used a combination of culturing and whole-genome sequencing to explore the transmission routes of Escherichia coli from hospitalized patients suffering from urinary tract infections (UTI) via wastewater to the environment. Samples were collected in two periods in three locations (A, B, and C) and cultured on selective antibiotic-enhanced plates. RESULTS: In total, 408 E. coli isolates were obtained from patients with UTI (n=81), raw hospital sewage (n=73), WWTPs inflow (n=96)/outflow (n=106), and river upstream (n=21)/downstream (n=31) of WWTPs. The majority of the isolates produced extended-spectrum beta-lactamase (ESBL), mainly CTX-M-15, and showed multidrug resistance (MDR) profiles. Seven carbapenemase-producing isolates with GES-5 or OXA-244 were obtained in two locations from wastewater and river samples. Isolates were assigned to 74 different sequence types (ST), with the predominance of ST131 (n=80) found in all sources including rivers. Extraintestinal pathogenic lineages frequently found in hospital sewage (ST10, ST38, and ST69) were also found in river water. Despite generally high genetic diversity, phylogenetic analysis of ST10, ST295, and ST744 showed highly related isolates (SNP 0-18) from different sources, providing the evidence for the transmission of resistant strains through WWTPs to surface waters. DISCUSSION: Results of this study suggest that 1) UTI share a minor participation in hospitals wastewaters; 2) a high diversity of STs and phylogenetic groups in municipal wastewaters derive from the urban influence rather than hospitals; and 3) pathogenic lineages and bacteria with emerging resistance genotypes associated with hospitals spread into surface waters. Our study highlights the contribution of hospital and municipal wastewater to the transmission of ESBL- and carbapenemase-producing E. coli with MDR profiles to the environment.
- Klíčová slova
- Escherichia coli, antibiotic resistance, beta-lactamases, wastewater, whole-genome sequencing,
- MeSH
- antibakteriální látky farmakologie MeSH
- beta-laktamasy genetika MeSH
- Escherichia coli genetika MeSH
- fylogeneze MeSH
- infekce močového ústrojí * mikrobiologie MeSH
- infekce vyvolané Escherichia coli * mikrobiologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- multilokusová sekvenční typizace MeSH
- nemocnice MeSH
- odpadní voda MeSH
- odpadní vody mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- beta-laktamasy MeSH
- odpadní voda MeSH
- odpadní vody MeSH
Wild birds, particularly silver gulls (Chroicocephalus novaehollandiae) that nest near anthropogenic sites, often harbour bacteria resistant to multiple antibiotics, including those considered of clinical importance. Here, we describe the whole genome sequence of Escherichia coli isolate CE1867 from a silver gull chick sampled in 2012 that hosted an I1 pST25 plasmid with blaSHV-12, a β-lactamase gene that encodes the ability to hydrolyze oxyimino β-lactams, and other antibiotic resistance genes. Isolate CE1867 is an ST297 isolate, a phylogroup B1 lineage, and clustered with a large ST297 O130:H11 clade, which carry Shiga toxin genes. The I1 plasmid belongs to plasmid sequence type 25 and is notable for its carriage of an atypical sul3-class 1 integron with mefB∆260, a structure most frequently reported in Australia from swine. This integron is a typical example of a Tn21-derived element that captured sul3 in place of the standard sul1 structure. Interestingly, the mercury resistance (mer) module of Tn21 is missing and has been replaced with Tn2-blaTEM-1 and a blaSHV-12 encoding module flanked by direct copies of IS26. Comparisons to similar plasmids, however, demonstrate a closely related family of ARG-carrying plasmids that all host variants of the sul3-associated integron with conserved Tn21 insertion points and a variable presence of both mer and mefB truncations, but predominantly mefB∆260.
- Klíčová slova
- AMR, Escherichia coli, IS26, Tn21, antibiotic, extended spectrum β-lactamase,
- Publikační typ
- časopisecké články MeSH
The Australian silver gull is an urban-adapted species that frequents anthropogenic waste sites. The enterobacterial flora of synanthropic birds often carries antibiotic resistance genes. Whole-genome sequence analyses of 425 Escherichia coli isolates from cloacal swabs of chicks inhabiting three coastal sites in New South Wales, Australia, cultured on media supplemented with meropenem, cefotaxime, or ciprofloxacin are reported. Phylogenetically, over 170 antibiotic-resistant lineages from 96 sequence types (STs) representing all major phylogroups were identified. Remarkably, 25 STs hosted the carbapenemase gene blaIMP-4, sourced only from Five Islands. Class 1 integrons carrying blaIMP and blaOXA alongside blaCTX-M and qnrS were notable. Multiple plasmid types mobilized blaIMP-4 and blaOXA-1, and 121 isolates (28%) carried either a ColV-like (18%) or a pUTI89-like (10%) F virulence plasmid. Phylogenetic comparisons to human isolates provided evidence of interspecies transmission. Our study underscores the importance of bystander species in the transmission of antibiotic-resistant and pathogenic E. coli. IMPORTANCE By compiling various genomic and phenotypic data sets, we have provided one of the most comprehensive genomic studies of Escherichia coli isolates from the Australian silver gull, on media containing clinically relevant antibiotics. The analysis of genetic structures capturing antimicrobial resistance genes across three gull breeding colonies in New South Wales, Australia, and comparisons to clinical data have revealed a range of trackable genetic signatures that highlight the broad distribution of clinical antimicrobial resistance in more than 170 different lineages of E. coli. Conserved truncation sizes of the class 1 integrase gene, a key component of multiple-drug resistance structures in the Enterobacteriaceae, represent unique deletion events that are helping to link seemingly disparate isolates and highlight epidemiologically relevant data between wildlife and clinical sources. Notably, only the most anthropogenically affected of the three sites (Five Islands) was observed to host carbapenem resistance, indicating a potential reservoir among the sites sampled.
- Klíčová slova
- AMR, Escherichia coli, genomics, wildlife,
- MeSH
- antibakteriální látky farmakologie MeSH
- antibiotická rezistence MeSH
- antiinfekční látky * MeSH
- Charadriiformes * mikrobiologie MeSH
- divoká zvířata MeSH
- Enterobacteriaceae MeSH
- Escherichia coli genetika MeSH
- fylogeneze MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie epidemiologie MeSH
- Názvy látek
- antibakteriální látky MeSH
- antiinfekční látky * MeSH