Most cited article - PubMed ID 34913356
SARS-CoV-2 viral load assessment in lung transplantation
High incidence of thrombosis and venous thromboembolism was reported in patients with COVID-19. In this study, we focused on analysis of thrombophilic mutations performed without a standard DNA extraction step. In one hundred of COVID-19 positive outpatients, real-time PCR for Leiden mutation in the FV gene and G20210A mutation in the FII gene was carried out from DNA extracts and modified whole blood samples, and their cycle threshold (Ct) values were evaluated. In the extracts, healthy homozygotes (wt/wt), heterozygotes (M/wt), and homozygous carriers of Leiden mutation (M/M) provided median Ct values of 18.5, 19.4/22.0, and 20.9. In the whole blood, Ct values were 25.3 (wt/wt), 24.8/27.2 (M/wt), and 26.9 (M/M). Median Ct values for G20210A in the extracts were 19.6 for homozygotes (wt/wt), and 19.7/20.4 for heterozygous carriers. The whole blood samples provided Ct values of 23.9 in healthy homozygotes and 26.3/27.2 in heterozygotes for G20210A mutation. No homozygous subjects for G20210A and no double heterozygotes (for Leiden and G20210A mutations) were found. Despite significant differences in the Ct values, genotyping showed complete result concordance of the DNA extracts and the whole blood samples. The integrity and amplificability of DNA molecules in the whole blood samples during 28 days of deep freezing, interrupted by four cycles of thawing, did not significantly change. In conclusion, we demonstrated a new protocol for the detection of the thrombophilic mutations via real time PCR on the modified whole blood of COVID-19 positive patients. The blood modification was reliable, easy, cheap, and saving costs and turnaround time of the whole laboratory process.
- MeSH
- COVID-19 * diagnosis genetics MeSH
- DNA MeSH
- Factor V genetics MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Humans MeSH
- Mutation MeSH
- Prothrombin genetics MeSH
- Risk Factors MeSH
- SARS-CoV-2 genetics MeSH
- COVID-19 Testing MeSH
- Thrombophilia * genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA MeSH
- Factor V MeSH
- Prothrombin MeSH
Lung transplant (LuTx) recipients are at a higher risk of developing serious illnesses from COVID-19, and thus, we have closely reviewed the consequences of the COVID-19 pandemic on lung transplantation. In most transplant centers, the overall LuTx activity significantly declined and led to a specific period of restricting lung transplantation to urgent cases. Moreover, several transplant centers reported difficulties due to the shortage of ICU capacities. The fear of donor-derived transmission generated extensive screening programs. Nevertheless, reasonable concerns about the unnecessary losses of viable organs were also raised. The overall donor shortage resulted in increased waiting-list mortality, and COVID-19-associated ARDS became an indication of lung transplantation. The impact of specific immunosuppressive agents on the severity of COVID-19 varied. Corticosteroid discontinuation was not found to be beneficial for LuTx patients. Tacrolimus concentrations were reported to increase during the SARS-CoV-2 infection, and in combination with remdesivir, tacrolimus may clinically impact renal functions. Monoclonal antibodies were shown to reduce the risk of hospitalization in SOT recipients. However, understanding the pharmacological interactions between the anti-COVID-19 drugs and the immunosuppressive drugs requires further research.
- Keywords
- COVID-19, immunosuppression, lung transplantation, transplant activity, treatment,
- Publication type
- Journal Article MeSH
- Review MeSH
Lung transplant (LuTx) recipients are considered to be at higher risk of developing serious illness from COVID-19. COVID-19 vaccines were shown in randomized clinical trials to substantially reduce the severity of COVID-19, however, patients receiving immunosuppressants were excluded from these trials. Observational studies report a proportion of solid organ transplant (SOT) recipients being able to mount sufficient titers of SARS-CoV-2 specific IgG antibodies, however, other studies demonstrate that more than 90% of the SOT recipients elicit neither humoral nor cellular immune response after vaccination. Currently, the third booster dose of the COVID-19 vaccines was shown to elicit strong immune responses and may, thus, represent a potent tool in the prevention of severe COVID-19 infection in SOT recipients, including patients after lung transplantation. To address the main challenges of SARS-CoV-2 vaccination in LuTx recipients in the era of COVID-19, we have closely collected all available data on the immunogenicity, efficacy and safety of COVID-19 vaccines in LuTx recipients.
- Keywords
- COVID-19, Moderna, Pfizer, immunosuppression, mRNA vaccination, transplant,
- MeSH
- COVID-19 * prevention & control MeSH
- Humans MeSH
- Lung MeSH
- Transplant Recipients * MeSH
- SARS-CoV-2 MeSH
- Vaccination MeSH
- COVID-19 Vaccines adverse effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- COVID-19 Vaccines MeSH