Most cited article - PubMed ID 35112132
The H3.3 chaperone Hira complex orchestrates oocyte developmental competence
Mammalian oocyte development depends on the temporally controlled translation of maternal transcripts, particularly in the coordination of meiotic and early embryonic development when transcription has ceased. The translation of mRNA is regulated by various RNA-binding proteins. We show that the absence of cytoplasmic polyadenylation element-binding protein 3 (CPEB3) negatively affects female reproductive fitness. CPEB3-depleted oocytes undergo meiosis normally but experience early embryonic arrest due to a disrupted transcriptome, leading to aberrant protein expression and the subsequent failure of embryonic transcription initiation. We found that CPEB3 stabilizes a subset of mRNAs with a significantly longer 3'UTR that is enriched in its distal region with cytoplasmic polyadenylation elements. Overall, our results suggest that CPEB3 is an important maternal factor that regulates the stability and translation of a subclass of mRNAs that are essential for the initiation of embryonic transcription and thus for embryonic development.
- Keywords
- embryo, mRNA, oocyte, translation,
- MeSH
- 3' Untranslated Regions genetics MeSH
- Embryonic Development genetics MeSH
- Meiosis genetics MeSH
- RNA, Messenger genetics metabolism MeSH
- Mice MeSH
- Oocytes * metabolism MeSH
- Polyadenylation MeSH
- RNA-Binding Proteins * metabolism genetics MeSH
- RNA Stability genetics MeSH
- Gene Expression Regulation, Developmental MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 3' Untranslated Regions MeSH
- Cpeb3 protein, mouse MeSH Browser
- RNA, Messenger MeSH
- RNA-Binding Proteins * MeSH