Most cited article - PubMed ID 35338694
The mycobacterial guaB1 gene encodes a guanosine 5'-monophosphate reductase with a cystathionine-β-synthase domain
Mycobacterial HelD is a transcription factor that recycles stalled RNAP by dissociating it from nucleic acids and, if present, from the antibiotic rifampicin. The rescued RNAP, however, must disengage from HelD to participate in subsequent rounds of transcription. The mechanism of release is unknown. We show that HelD from Mycobacterium smegmatis forms a complex with RNAP associated with the primary sigma factor σA and transcription factor RbpA but not CarD. We solve several structures of RNAP-σA-RbpA-HelD without and with promoter DNA. These snapshots capture HelD during transcription initiation, describing mechanistic aspects of HelD release from RNAP and its protective effect against rifampicin. Biochemical evidence supports these findings, defines the role of ATP binding and hydrolysis by HelD in the process, and confirms the rifampicin-protective effect of HelD. Collectively, these results show that when HelD is present during transcription initiation, the process is protected from rifampicin until the last possible moment.
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Bacterial Proteins * metabolism genetics MeSH
- DNA-Directed RNA Polymerases * metabolism MeSH
- Transcription, Genetic MeSH
- Transcription Initiation, Genetic * MeSH
- Mycobacterium smegmatis * metabolism genetics MeSH
- Promoter Regions, Genetic * MeSH
- Gene Expression Regulation, Bacterial MeSH
- Rifampin * pharmacology MeSH
- Sigma Factor * metabolism genetics MeSH
- Transcription Factors metabolism MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
- Bacterial Proteins * MeSH
- DNA-Directed RNA Polymerases * MeSH
- Rifampin * MeSH
- Sigma Factor * MeSH
- Transcription Factors MeSH
Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Allosteric Regulation MeSH
- Bacterial Proteins metabolism chemistry genetics MeSH
- Cryoelectron Microscopy MeSH
- Guanosine Pentaphosphate metabolism MeSH
- Guanosine Triphosphate * metabolism MeSH
- IMP Dehydrogenase * metabolism chemistry antagonists & inhibitors MeSH
- Inosine Monophosphate metabolism chemistry MeSH
- Catalytic Domain MeSH
- Models, Molecular MeSH
- Mycobacterium smegmatis enzymology metabolism MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
- Bacterial Proteins MeSH
- Guanosine Pentaphosphate MeSH
- Guanosine Triphosphate * MeSH
- IMP Dehydrogenase * MeSH
- Inosine Monophosphate MeSH