This paper describes a compact video-ophthalmoscope (VO) designed for capturing retinal video sequences of the optic nerve head (ONH) under flicker light stimulation. The device uses an OLED display and a fiber optic-coupled LED light source, enabling high-frame-rate video at low illumination intensity (12 μW/cm2). Retinal responses were recorded in 10 healthy subjects during flicker light exposure with a pupil irradiance of 2 μW/cm2. Following 20 s of stimulation, all subjects displayed changes in retinal reflectance and pulsation attenuation, linked to blood flow and volume variations. These findings suggest that increased blood volume leads to decreased retinal reflectance. Temporal analysis confirmed the ability to capture flicker-induced retinal reflectance changes, indicating its potential for spatial and temporal analysis. Overall, this device offers a portable approach for investigating dynamic retinal responses to light stimuli, which can aid the diagnosis of retinal diseases like diabetic retinopathy, glaucoma, or neurodegenerative diseases affecting retinal blood circulation.
- Klíčová slova
- blood volume, fundus reflectance, light flickering, neurovascular coupling, optic nerve head, video‐ophthalmoscopy,
- MeSH
- audiovizuální záznam * přístrojové vybavení MeSH
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- oftalmoskopy * MeSH
- retina * účinky záření fyziologie MeSH
- světelná stimulace * MeSH
- světlo * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The phenomenon of retinal vein pulsation is still not a deeply understood topic in retinal hemodynamics. In this paper, we present a novel hardware solution for recording retinal video sequences and physiological signals using synchronized acquisition, we apply the photoplethysmographic principle for the semi-automatic processing of retinal video sequences and we analyse the timing of the vein collapse within the cardiac cycle using of an electrocardiographic signal (ECG). We measured the left eyes of healthy subjects and determined the phases of vein collapse within the cardiac cycle using a principle of photoplethysmography and a semi-automatic image processing approach. We found that the time to vein collapse (Tvc) is between 60 ms and 220 ms after the R-wave of the ECG signal, which corresponds to 6% to 28% of the cardiac cycle. We found no correlation between Tvc and the duration of the cardiac cycle and only a weak correlation between Tvc and age (0.37, p = 0.20), and Tvc and systolic blood pressure (-0.33, p = 0.25). The Tvc values are comparable to those of previously published papers and can contribute to the studies that analyze vein pulsations.
- Publikační typ
- časopisecké články MeSH