Nejvíce citovaný článek - PubMed ID 35832026
Bacterial Aryl Sulfotransferases in Selective and Sustainable Sulfation of Biologically Active Compounds using Novel Sulfate Donors
The preparation of pure metabolites of bioactive compounds, particularly (poly)phenols, is essential for the accurate determination of their pharmacological profiles in vivo. Since the extraction of these metabolites from biological material is tedious and impractical, they can be synthesized enzymatically in vitro by bacterial PAPS-independent aryl sulfotransferases (ASTs). However, only a few ASTs have been studied and used for (poly)phenol sulfation. This study introduces new fully characterized recombinant ASTs selected according to their similarity to the previously characterized ASTs. These enzymes, produced in Escherichia coli, were purified, biochemically characterized, and screened for the sulfation of nine flavonoids and two phenolic acids using p-nitrophenyl sulfate. All tested compounds were proved to be substrates for the new ASTs, with kaempferol and luteolin being the best converted acceptors. ASTs from Desulfofalx alkaliphile (DalAST) and Campylobacter fetus (CfAST) showed the highest efficiency in the sulfation of tested polyphenols. To demonstrate the efficiency of the present sulfation approach, a series of new authentic metabolite standards, regioisomers of kaempferol sulfate, were enzymatically produced, isolated, and structurally characterized.
- Klíčová slova
- aryl sulfotransferase, enzymatic sulfation, kaempferol sulfate, metabolite, polyphenol,
- MeSH
- arylsulfotransferasa * metabolismus chemie genetika MeSH
- bakteriální proteiny metabolismus chemie genetika MeSH
- biokatalýza MeSH
- Escherichia coli metabolismus genetika enzymologie MeSH
- polyfenoly * metabolismus chemie MeSH
- sírany metabolismus chemie MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arylsulfotransferasa * MeSH
- bakteriální proteiny MeSH
- polyfenoly * MeSH
- sírany MeSH
The term "biotransformation" refers to the process by which various compounds are biocatalyzed and enzymatically modified, as well as the metabolic changes that occur in organisms as a result of exposure to xenobiotics [...].
- MeSH
- biologické přípravky * MeSH
- biotransformace MeSH
- fytonutrienty metabolismus MeSH
- xenobiotika metabolismus MeSH
- Publikační typ
- úvodníky MeSH
- Názvy látek
- biologické přípravky * MeSH
- fytonutrienty MeSH
- xenobiotika MeSH
Phenolic acids are known flavonoid metabolites, which typically undergo bioconjugation during phase II of biotransformation, forming sulfates, along with other conjugates. Sulfated derivatives of phenolic acids can be synthesized by two approaches: chemoenzymatically by 3'-phosphoadenosine-5'-phosphosulfate (PAPS)-dependent sulfotransferases or PAPS-independent aryl sulfotransferases such as those from Desulfitobacterium hafniense, or chemically using SO3 complexes. Both approaches were tested with six selected phenolic acids (2-hydroxyphenylacetic acid (2-HPA), 3-hydroxyphenylacetic acid (3-HPA), 4-hydroxyphenylacetic acid (4-HPA), 3,4-dihydroxyphenylacetic acid (DHPA), 3-(4-hydroxyphenyl)propionic acid (4-HPP), and 3,4-dihydroxyphenylpropionic acid (DHPP)) to create a library of sulfated metabolites of phenolic acids. The sulfates of 3-HPA, 4-HPA, 4-HPP, DHPA, and DHPP were all obtained by the methods of chemical synthesis. In contrast, the enzymatic sulfation of monohydroxyphenolic acids failed probably due to enzyme inhibition, whereas the same reaction was successful for dihydroxyphenolic acids (DHPA and DHPP). Special attention was also paid to the counterions of the sulfates, a topic often poorly reported in synthetic works. The products obtained will serve as authentic analytical standards in metabolic studies and to determine their biological activity.
- Klíčová slova
- aryl sulfotransferase, biotransformation, flavonoid metabolites, phenolic acids, sulfation,
- MeSH
- fosfoadenosinfosfosulfát * chemie metabolismus MeSH
- hydroxybenzoáty MeSH
- sírany metabolismus MeSH
- sulfotransferasy * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfoadenosinfosfosulfát * MeSH
- hydroxybenzoáty MeSH
- phenolic acid MeSH Prohlížeč
- sírany MeSH
- sulfotransferasy * MeSH