Most cited article - PubMed ID 35996000
Microtubule lattice spacing governs cohesive envelope formation of tau family proteins
Complex morphogenetic processes such as cell division require a tight coordination of the activities of microtubules and actin filaments. There is evidence that anillin, conventionally known as an actin-binding and -bundling protein, regulates microtubule/actin crosstalk during cell division. However, it is unknown whether anillin binds directly to microtubules and whether it is sufficient to establish crosslinking between microtubules and actin filaments. Here we address both questions by developing an in vitro system for observing anillin-mediated interactions with actin filaments and dynamic microtubules via total internal-reflection fluorescence microscopy. We find that anillin can interact directly with microtubules and promote microtubule bundling. We confirm that anillin binds and bundles actin filaments, and find that it has a strong preference for actin bundles over individual filaments. Moreover, we show that anillin can directly crosslink microtubules and actin filaments, cause sliding of actin filaments on the microtubule lattice, and transport actin filaments by the growing microtubule tip. Our findings indicate that anillin can potentially serve as a direct regulator of microtubule/actin crosstalk, e.g., during cell division.
- Keywords
- Cell Division, Cytoskeleton, Dynamic Instability, Reconstituted System,
- Publication type
- Journal Article MeSH
Microtubule doublets (MTDs) comprise an incomplete microtubule (B-tubule) attached to the side of a complete cylindrical microtubule. These compound microtubules are conserved in cilia across the tree of life; however, the mechanisms by which MTDs form and are maintained in vivo remain poorly understood. Here, we identify microtubule-associated protein 9 (MAP9) as an MTD-associated protein. We demonstrate that C. elegans MAPH-9, a MAP9 homolog, is present during MTD assembly and localizes exclusively to MTDs, a preference that is in part mediated by tubulin polyglutamylation. We find that loss of MAPH-9 causes ultrastructural MTD defects, including shortened and/or squashed B-tubules with reduced numbers of protofilaments, dysregulated axonemal motor velocity, and perturbed cilia function. Because we find that the mammalian ortholog MAP9 localizes to axonemes in cultured mammalian cells and mouse tissues, we propose that MAP9/MAPH-9 plays a conserved role in regulating ciliary motors and supporting the structure of axonemal MTDs.
- Keywords
- C. elegans, MAP9, axoneme, cilia, dynein, kinesin, microtubule, microtubule doublet, microtubule-associated protein, polyglutamylation,
- MeSH
- Axoneme * metabolism ultrastructure MeSH
- Caenorhabditis elegans * metabolism MeSH
- Cilia metabolism MeSH
- Microtubules metabolism MeSH
- Mice MeSH
- Movement MeSH
- Mammals MeSH
- Tubulin metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Map9 protein, mouse MeSH Browser
- Tubulin MeSH
Tubulin posttranslational modifications have been predicted to control cytoskeletal functions by coordinating the molecular interactions between microtubules and their associating proteins. A prominent tubulin modification in neurons is polyglutamylation, the deregulation of which causes neurodegeneration. Yet, the underlying molecular mechanisms have remained elusive. Here, using in-vitro reconstitution, we determine how polyglutamylation generated by the two predominant neuronal polyglutamylases, TTLL1 and TTLL7, specifically modulates the activities of three major microtubule interactors: the microtubule-associated protein Tau, the microtubule-severing enzyme katanin and the molecular motor kinesin-1. We demonstrate that the unique modification patterns generated by TTLL1 and TTLL7 differentially impact those three effector proteins, thus allowing for their selective regulation. Given that our experiments were performed with brain tubulin from mouse models in which physiological levels and patterns of polyglutamylation were altered by the genetic knockout of the main modifying enzymes, our quantitative measurements provide direct mechanistic insight into how polyglutamylation could selectively control microtubule interactions in neurons.
- Keywords
- katanin, kinesin-1, microtubule-associated Tau, microtubules, polyglutamylation, tubulin posttranslational modifications,
- MeSH
- Cytoskeleton metabolism MeSH
- Kinesins metabolism MeSH
- Microtubules metabolism MeSH
- Mice MeSH
- Peptide Synthases MeSH
- Microtubule-Associated Proteins MeSH
- Tubulin * metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Kinesins MeSH
- Peptide Synthases MeSH
- Microtubule-Associated Proteins MeSH
- tubulin polyglutamylase MeSH Browser
- Tubulin * MeSH