Nejvíce citovaný článek - PubMed ID 36158203
Two complementary approaches for efficient isolation of Sertoli cells for transcriptomic analysis
There is a well-established link between abnormal sperm chromatin states and poor motility, however, how these two processes are interdependent is unknown. Here, we identified a possible mechanistic insight by showing that Protamine 2, a nuclear DNA packaging protein in sperm, directly interacts with cytoskeletal protein Septin 12, which is associated with sperm motility. Septin 12 has several isoforms, and we show, that in the Prm2 -/- sperm, the short one (Mw 36 kDa) is mis-localized, while two long isoforms (Mw 40 and 41 kDa) are unexpectedly lost in Prm2 -/- sperm chromatin-bound protein fractions. Septin 12 co-immunoprecipitated with Protamine 2 in the testicular cell lysate of WT mice and with Lamin B1/2/3 in co-transfected HEK cells despite we did not observe changes in Lamin B2/B3 proteins or SUN4 expression in Prm2 -/- testes. Furthermore, the Prm2 -/- sperm have on average a smaller sperm nucleus and aberrant acrosome biogenesis. In humans, patients with low sperm motility (asthenozoospermia) have imbalanced histone-protamine 1/2 ratio, modified levels of cytoskeletal proteins and we detected retained Septin 12 isoforms (Mw 40 and 41 kDa) in the sperm membrane, chromatin-bound and tubulin/mitochondria protein fractions. In conclusion, our findings present potential interaction between Septin 12 and Protamine 2 or Lamin B2/3 and describe a new connection between their expression and localization, contributing likely to low sperm motility and morphological abnormalities.
- Klíčová slova
- Protamine 2 deficiency, Septin 12, annulus, asthenozoospermia, sperm, sperm immotility,
- Publikační typ
- časopisecké články MeSH
Male infertility affects approximately 14% of all European men, of which ~44% are characterized as idiopathic. There is an urgency to identify the factors that affect male fertility. One such factor, Autoimmune Regulator (AIRE), a protein found in the thymus, has been studied in the context of central tolerance functioning as a nuclear transcription modulator, responsible for the expression of tissue-restricted antigens in specialized thymic cells that prevent autoimmunity. While its expression in the testes remains enigmatic, we recently observed that sterility in mice correlates with the absence of Aire in the testes, regardless of the deficient expression in medullary thymic epithelial cells or cells of the hematopoietic system. By assessing the Aire transcript levels, we discovered that Sertoli cells are the exclusive source of Aire in the testes, where it most likely plays a non-immune role, suggesting an unknown mechanism by which testicular Aire regulates fertility. Here, we discuss these results in the context of previous reports which have suggested that infertility observed in Aire deficient mice is of an autoimmune aetiology. We present an alternative point of view for the role of Aire in testes in respect to fertility altering the perspective of how Aire's function in the testes is currently perceived.
- Klíčová slova
- Aire 1, Sertoli cells 5, autoimmunity 2, spermatogenesis 6, sterility 3, testis 4,
- MeSH
- autoimunita * MeSH
- buněčné jádro MeSH
- epitelové buňky * metabolismus MeSH
- fertilita MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH