Most cited article - PubMed ID 36220811
An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases
The trypanosomatid flagellates possess in their single mitochondrion a highly complex kinetoplast (k)DNA, which is composed of interlocked circular molecules of two types. Dozens of maxicircles represent a classical mitochondrial genome, and thousands of minicircles encode guide (g)RNAs, which direct the processive and essential uridine insertion/deletion messenger RNA (mRNA) editing of maxicircle transcripts. While the details of kDNA structure and this type of RNA editing are well established, our knowledge mostly relies on a narrow foray of intensely studied human parasites of the genera Leishmania and Trypanosoma. Here, we analyzed kDNA, its expression, and RNA editing of two members of the poorly characterized genus Vickermania with very different cultivation histories. In both Vickermania species, the gRNA-containing heterogeneous large (HL)-circles are atypically large with multiple gRNAs each. Examination of Vickermania spadyakhi HL-circle loci revealed a massive redundancy of gRNAs relative to the editing needs. In comparison, the HL-circle repertoire of extensively cultivated Vickermania ingenoplastis is greatly reduced. It correlates with V. ingenoplastis-specific loss of productive editing of transcripts encoding subunits of respiratory chain complex I and corresponding lack of complex I activity. This loss in a parasite already lacking genes for subunits of complexes III and IV suggests an apparent requirement for its mitochondrial adenosine triphosphate (ATP) synthase to work in reverse to maintain membrane potential. In contrast, V. spadyakhi retains a functional complex I that allows ATP synthase to work in its standard direction.
- Keywords
- ATP synthase, RNA editing, Vickermania, kinetoplast DNA, trypanosomatids,
- MeSH
- RNA Editing * genetics MeSH
- Genome, Mitochondrial MeSH
- Genome, Protozoan * MeSH
- DNA, Kinetoplast * genetics MeSH
- Evolution, Molecular * MeSH
- Trypanosomatina * genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Kinetoplast * MeSH
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.
- Keywords
- constructive neutral evolution, evolutionary divergence, evolutionary mechanisms, gene replacement, molecular evolution, protein complexes,
- MeSH
- Eukaryota * genetics MeSH
- Phylogeny MeSH
- Genomics MeSH
- Evolution, Molecular * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The passage of protons across membranes through F1Fo-ATP synthases spins their rotors and drives the synthesis of ATP. While the principle of torque generation by proton transfer is known, the mechanisms and routes of proton access and release and their evolution are not fully understood. Here, we show that the entry site and path of protons in the lumenal half channel of mitochondrial ATP synthases are largely defined by a short N-terminal α-helix of subunit-a. In Trypanosoma brucei and other Euglenozoa, the α-helix is part of another polypeptide chain that is a product of subunit-a gene fragmentation. This α-helix and other elements forming the proton pathway are widely conserved across eukaryotes and in Alphaproteobacteria, the closest extant relatives of mitochondria, but not in other bacteria. The α-helix blocks one of two proton routes found in Escherichia coli, resulting in a single proton entry site in mitochondrial and alphaproteobacterial ATP synthases. Thus, the shape of the access half channel predates eukaryotes and originated in the lineage from which mitochondria evolved by endosymbiosis.
- Keywords
- Trypanosoma brucei, gene fragmentation, mitochondrial ATP synthase, proton path, proton translocation, subunit-a,
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Escherichia coli genetics metabolism MeSH
- Eukaryota metabolism MeSH
- Mitochondrial Proton-Translocating ATPases * genetics chemistry metabolism MeSH
- Proton-Translocating ATPases * metabolism MeSH
- Protons MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
- Mitochondrial Proton-Translocating ATPases * MeSH
- Proton-Translocating ATPases * MeSH
- Protons MeSH