Nejvíce citovaný článek - PubMed ID 36580032
Identification of Novel Associations and Localization of Signals in Idiopathic Inflammatory Myopathies Using Genome-Wide Imputation
OBJECTIVE: Idiopathic inflammatory myopathies (IIMs, myositis) are rare systemic autoimmune disorders that lead to muscle inflammation, weakness, and extramuscular manifestations, with a strong genetic component influencing disease development and progression. Previous genome-wide association studies identified loci associated with IIMs. In this study, we imputed data from two prior genome-wide myositis studies and analyzed the largest myositis data set to date to identify novel risk loci and susceptibility genes associated with IIMs and its clinical subtypes. METHODS: We performed association analyses on 14,903 individuals (3,206 patients and 11,697 controls) with genotypes and imputed data from the Trans-Omics for Precision Medicine reference panel. Fine-mapping and expression quantitative trait locus colocalization analyses in myositis-relevant tissues indicated potential causal variants. Functional annotation and network analyses using the random walk with restart (RWR) algorithm explored underlying genetic networks and drug repurposing opportunities. RESULTS: Our analyses identified novel risk loci and susceptibility genes, such as FCRLA, NFKB1, IRF4, DCAKD, and ATXN2 in overall IIMs; NEMP2 in polymyositis; ACBC11 in dermatomyositis; and PSD3 in myositis with anti-histidyl-transfer RNA synthetase autoantibodies (anti-Jo-1). We also characterized effects of HLA region variants and the role of C4. Colocalization analyses suggested putative causal variants in DCAKD in skin and muscle, HCP5 in lung, and IRF4 in Epstein-Barr virus (EBV)-transformed lymphocytes, lung, and whole blood. RWR further prioritized additional candidate genes, including APP, CD74, CIITA, NR1H4, and TXNIP, for future investigation. CONCLUSION: Our study uncovers novel genetic regions contributing to IIMs, advancing our understanding of myositis pathogenesis and offering new insights for future research.
Genome-wide association studies (GWASs) have been successful at finding associations between genetic variants and human traits, including the immune-mediated diseases (IMDs). However, the requirement of large sample sizes for discovery poses a challenge for learning about less common diseases, where increasing volunteer numbers might not be feasible. An example of this is myositis (or idiopathic inflammatory myopathies [IIM]s), a group of rare, heterogeneous autoimmune diseases affecting skeletal muscle and other organs, severely impairing life quality. Here, we applied a feature engineering method to borrow information from larger IMD GWASs to find new genetic associations with IIM and its subgroups. Combining this approach with two clustering methods, we found 17 IMDs genetically close to IIM, including some common comorbid conditions, such as systemic sclerosis and Sjögren's syndrome, as well as hypo- and hyperthyroidism. All IIM subtypes were genetically similar within this framework. Next, we colocalized IIM signals that overlapped IMD signals, and found seven potentially novel myositis associations mapped to immune-related genes, including BLK, IRF5/TNPO3, and ITK/HAVCR2, implicating a role for both B and T cells in IIM. This work proposes a new paradigm of genetic discovery in rarer diseases by leveraging information from more common IMD, and can be expanded to other conditions and traits beyond IMD.
- MeSH
- autoimunitní nemoci genetika imunologie MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- myozitida * genetika imunologie MeSH
- nemoci imunitního systému genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH