Most cited article - PubMed ID 36677521
Deletions across the SARS-CoV-2 Genome: Molecular Mechanisms and Putative Functional Consequences of Deletions in Accessory Genes
SARS-CoV-2 has accumulated many mutations since its emergence in late 2019. Nucleotide substitutions leading to amino acid replacements constitute the primary material for natural selection. Insertions, deletions, and substitutions appear to be critical for coronavirus's macro- and microevolution. Understanding the molecular mechanisms of mutations in the mutational hotspots (positions, loci with recurrent mutations, and nucleotide context) is important for disentangling roles of mutagenesis and selection. In the SARS-CoV-2 genome, deletions and insertions are frequently associated with repetitive sequences, whereas C>U substitutions are often surrounded by nucleotides resembling the APOBEC mutable motifs. We describe various approaches to mutation spectra analyses, including the context features of RNAs that are likely to be involved in the generation of recurrent mutations. We also discuss the interplay between mutations and natural selection as a complex evolutionary trend. The substantial variability and complexity of pipelines for the reconstruction of mutations and the huge number of genomic sequences are major problems for the analyses of mutations in the SARS-CoV-2 genome. As a solution, we advocate for the development of a centralized database of predicted mutations, which needs to be updated on a regular basis.
- Keywords
- ADAR, APOBEC, SARS-CoV-2, epistasis, low-complexity regions, mutation hotspots, oxidative stress, viral fitness,
- MeSH
- COVID-19 * genetics MeSH
- Humans MeSH
- Mutation MeSH
- Mutagenesis MeSH
- Nucleotides MeSH
- SARS-CoV-2 genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Nucleotides MeSH
BACKGROUND: Accessory proteins have diverse roles in coronavirus pathobiology. One of them in SARS-CoV (the causative agent of the severe acute respiratory syndrome outbreak in 2002-2003) is encoded by the open reading frame 8 (ORF8). Among the most dramatic genomic changes observed in SARS-CoV isolated from patients during the peak of the pandemic in 2003 was the acquisition of a characteristic 29-nucleotide deletion in ORF8. This deletion cause splitting of ORF8 into two smaller ORFs, namely ORF8a and ORF8b. Functional consequences of this event are not entirely clear. RESULTS: Here, we performed evolutionary analyses of ORF8a and ORF8b genes and documented that in both cases the frequency of synonymous mutations was greater than that of nonsynonymous ones. These results suggest that ORF8a and ORF8b are under purifying selection, thus proteins translated from these ORFs are likely to be functionally important. Comparisons with several other SARS-CoV genes revealed that another accessory gene, ORF7a, has a similar ratio of nonsynonymous to synonymous mutations suggesting that ORF8a, ORF8b, and ORF7a are under similar selection pressure. CONCLUSIONS: Our results for SARS-CoV echo the known excess of deletions in the ORF7a-ORF7b-ORF8 complex of accessory genes in SARS-CoV-2. A high frequency of deletions in this gene complex might reflect recurrent searches in "functional space" of various accessory protein combinations that may eventually produce more advantageous configurations of accessory proteins similar to the fixed deletion in the SARS-CoV ORF8 gene.
- Keywords
- Evolution, Gene regulation, Natural selection, Protein truncation, Rearrangements, Recombination,
- MeSH
- Biological Evolution MeSH
- COVID-19 * MeSH
- Humans MeSH
- Nucleotides MeSH
- Open Reading Frames MeSH
- SARS-CoV-2 genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nucleotides MeSH