Nejvíce citovaný článek - PubMed ID 36693484
Serum and lymph pharmacokinetics of nilotinib delivered by yeast glucan particles per os
Background: Ivacaftor is a modern drug used in the treatment of cystic fibrosis. It is highly lipophilic and exhibits a strong positive food effect. These characteristics can be potentially connected to a pronounced lymphatic transport after oral administration. Methods: A series of studies was conducted to describe the basic pharmacokinetic parameters of ivacaftor in jugular vein cannulated rats when dosed in two distinct formulations: an aqueous suspension and an oil solution. Additionally, an anesthetized mesenteric lymph duct cannulated rat model was studied to precisely assess the extent of lymphatic transport. Results: Mean ± SD ivacaftor oral bioavailability was 18.4 ± 3.2% and 16.2 ± 7.8%, respectively, when administered as an aqueous suspension and an oil solution. The relative contribution of the lymphatic transport to the overall bioavailability was 5.91 ± 1.61% and 4.35 ± 1.84%, respectively. Conclusion: Lymphatic transport plays only a minor role in the process of ivacaftor intestinal absorption, and other factors are, therefore, responsible for its pronounced positive food effect.
- Klíčová slova
- bioavailability, intestinal absorption, ivacaftor, lymphatic transport, pharmacokintetics,
- Publikační typ
- časopisecké články MeSH
Currently available methods for cell separation are generally based on fluorescent labeling using either endogenously expressed fluorescent markers or the binding of antibodies or antibody mimetics to surface antigenic epitopes. However, such modification of the target cells represents potential contamination by non-native proteins, which may affect further cell response and be outright undesirable in applications, such as cell expansion for diagnostic or therapeutic applications, including immunotherapy. We present a label- and antibody-free method for separating macrophages from living Drosophila based on their ability to preferentially phagocytose whole yeast glucan particles (GPs). Using a novel deswelling entrapment approach based on spray drying, we have successfully fabricated yeast glucan particles with the previously unachievable content of magnetic iron oxide nanoparticles while retaining their surface features responsible for phagocytosis. We demonstrate that magnetic yeast glucan particles enable macrophage separation at comparable yields to fluorescence-activated cell sorting without compromising their viability or affecting their normal function and gene expression. The use of magnetic yeast glucan particles is broadly applicable to situations where viable macrophages separated from living organisms are subsequently used for analyses, such as gene expression, metabolomics, proteomics, single-cell transcriptomics, or enzymatic activity analysis.
- Klíčová slova
- cell separation, iron oxide nanoparticles, phagocytosis, spray drying, β-glucan particles,
- MeSH
- Drosophila melanogaster metabolismus MeSH
- glukany * chemie metabolismus MeSH
- magnetické jevy MeSH
- makrofágy metabolismus MeSH
- Saccharomyces cerevisiae * chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glukany * MeSH