Most cited article - PubMed ID 36776107
Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS)
RATIONALE: Data are required for SIFT-MS analysis of perfluoroalkyl and polyfluoroalkyl substances (PFAS), which are persistent in the environment and cause adverse health effects. Specifically, the rate coefficients and product ion branching ratios of the reactions of H3O+, NO+, O2 +•, O-•, OH-, O2 -•, NO2 - and NO3 - with PFAS vapours are needed. METHODS: The dual polarity SIFT-MS instrument (Voice200) was used to generate these eight reagent ions and inject them into the flow tube with N2 carrier gas at a temperature of 393 K. Vapours of pentafluoropropionic acid, heptafluorobutyric acid, nonafluoro-1-hexanol, perfluoro-2-methyl-2-pentene, perfluorohexanoic acid, perfluoro(2-methyl-3-oxahexanoic) acid, tridecafluoro-1-octanol and nonafluorobutane-1-sulfonic acid were introduced in dry and humid air. Full-scan mass spectra were collected for all reagents at variable PFAS concentrations and analysed numerically. RESULTS: Rate coefficients were determined for 64 reactions, for which 55 positive and 71 negative product ions were identified. The branching ratios for the primary reaction channels were extracted from the data, and the secondary chemistry with H2O molecules was qualitatively assessed. The thermochemical data were calculated for the H3O+ reactions using density functional theory (DFT). CONCLUSIONS: An important observation is that secondary reactions with water molecules remove the positive product ions, making them unsuitable for practical SIFT-MS analysis of PFAS vapours. In contrast, most negative reaction product ions are not significantly affected by humidity and are thus preferred for the SIFT-MS analyses of PFAS substances in various gaseous matrices.
- Keywords
- ion molecule reactions, perfluoroalkyl and polyfluoroalkyl substances (PFAS), selected ion flow tube,
- Publication type
- Journal Article MeSH
Ionization of volatile organic compounds (VOCs) by coinage metal ions (Cu+, Ag+, and Au+) generated by laser desorption and ionization (LDI) of a metal nanolayer in subatmospheric conditions is explored. The study was performed in a commercial subatmospheric dual MALDI/ESI ion source. Five compounds representing different VOC classes were chosen for a detailed study of the metal ionization mechanism: ethanol, acetone, acetic acid, xylene, and cyclohexane. In the gas phase, ion molecular complexes of all three metal ions were formed, typically with two ligand molecules. The successful detection of the metal complexes with VOCs strongly depended on the applied voltages across the ion source, minimizing the in-source fragmentation. The employed orbital trap with ultrahigh resolving power and sub-parts-per-million mass accuracy allowed unambiguous identification of the formed complexes based on their molecular formulas. The detection limits of the studied compounds in the gas were in the range 0.1-1.4 nmol/L. Compared to Cu+ and Ag+ ions, Au+ ions exhibited the highest reactivity, often complicating spectra by side products of reactions. On the other hand, they also allowed detecting saturated hydrocarbons, which did not produce any signals with Ag+ and Cu+.
- Publication type
- Journal Article MeSH
An instrument integrating thermal desorption (TD) to selected ion flow tube mass spectrometry (SIFT-MS) is presented, and its application to analyze volatile organic compounds (VOCs) in human breath is demonstrated for the first time. The rationale behind this development is the need to analyze breath samples in large-scale multicenter clinical projects involving thousands of patients recruited in different hospitals. Following adapted guidelines for validating analytical techniques, we developed and validated a targeted analytical method for 21 compounds of diverse chemical class, chosen for their clinical and biological relevance. Validation has been carried out by two independent laboratories, using calibration standards and real breath samples from healthy volunteers. The merging of SIFT-MS and TD integrates the rapid analytical capabilities of SIFT-MS with the capacity to collect breath samples across multiple hospitals. Thanks to these features, the novel instrument has the potential to be easily employed in clinical practice.
- MeSH
- Breath Tests methods MeSH
- Mass Spectrometry methods MeSH
- Humans MeSH
- Volatile Organic Compounds * analysis MeSH
- Body Fluids * chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Volatile Organic Compounds * MeSH
Selected ion flow tube mass spectrometry, SIFT-MS, has been widely used in industry and research since its introduction in the mid-1990s. Previously described quantitation methods have been advanced to include a gas standard for a more robust and repeatable analytical performance. The details of this approach to calculate the concentrations from ion-molecule reaction kinetics based on reaction times and instrument calibration functions determined from known concentrations in the standard mix are discussed. Important practical issues such as the overlap of product ions are outlined, and best-practice approaches are presented to enable them to be addressed during method development. This review provides a fundamental basis for a plethora of studies in broad application areas that are possible with SIFT-MS instruments.
- Keywords
- SIFT-MS, VOCs, ion molecule reactions, negative reagent ions, nitrogen carrier gas, quantitation, selected ion flow tube mass spectrometry, volatile organic compounds,
- Publication type
- Journal Article MeSH
Selected ion flow tube mass spectrometry (SIFT-MS) instruments have significantly developed since this technique was introduced more than 20 years ago. Most studies of the ion-molecule reaction kinetics that are essential for accurate analyses of trace gases and vapors in air and breath were conducted in He carrier gas at 300 K, while the new SIFT-MS instruments (optimized to quantify concentrations down to parts per trillion by volume) operate with N2 carrier gas at 393 K. Thus, we pose the question of how to reuse the data from the extensive body of previous literature using He at room temperature in the new instruments operating with N2 carrier gas at elevated temperatures. Experimentally, we found the product ions to be qualitatively similar, although there were differences in the branching ratios, and some reaction rate coefficients were lower in the heated N2 carrier gas. The differences in the reaction kinetics may be attributed to temperature, an electric field in the current flow tubes, and the change from He to N2 carrier gas. These results highlight the importance of adopting an updated reaction kinetics library that accounts for the new instruments' specific conditions. In conclusion, almost all previous rate coefficients may be used after adjustment for higher temperatures, while some product ion branching ratios need to be updated.
- Publication type
- Journal Article MeSH