Most cited article - PubMed ID 37226278
The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera
Satellite DNAs (satDNAs) are abundant components of eukaryotic genomes, playing pivotal roles in chromosomal organization, genome stability, and evolution. Here, we combined cytogenetic and genomic methods to characterize the satDNAs in the genomes of Leptidea butterflies. Leptidea is characterized by the presence of a high heterochromatin content, large genomes, and extensive chromosomal reshuffling as well as the occurrence of cryptic species. We show that, in contrast to other Lepidoptera, satDNAs constitute a considerable proportion of Leptidea genomes, ranging between 4.11% and 11.05%. This amplification of satDNAs, together with the hyperactivity of transposable elements, contributes to the substantial genome expansion in Leptidea. Using chromosomal mapping, we show that, particularly LepSat01-100 and LepSat03-167 satDNAs, are preferentially localized in heterochromatin exhibiting variable distribution that may have contributed to the highly diverse karyotypes within the genus. The satDNAs also exhibit W-chromosome accumulation, suggesting their involvement in sex chromosome evolution. Our results provide insights into the dynamics of satDNAs in Lepidoptera genomes and highlight their role in genome expansion and chromosomal organization, which could influence the speciation process. The high proportion of repetitive DNAs in the genomes of Leptidea underscores the complex evolutionary dynamics revealing the interplay between repetitive DNAs and genomic architecture in the genus.
- Keywords
- Lepidoptera, chromosome mapping, cryptic species, genome evolution, repetitive DNA,
- MeSH
- Phylogeny MeSH
- Genome, Insect * MeSH
- Heterochromatin genetics MeSH
- Karyotype * MeSH
- Chromosome Mapping MeSH
- Evolution, Molecular * MeSH
- Butterflies * genetics MeSH
- DNA, Satellite * genetics MeSH
- DNA Transposable Elements MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Heterochromatin MeSH
- DNA, Satellite * MeSH
- DNA Transposable Elements MeSH
Although both are salient features of genomes, at first glance ribosomal DNAs and transposable elements are genetic elements with not much in common: whereas ribosomal DNAs are mainly viewed as housekeeping genes that uphold all prime genome functions, transposable elements are generally portrayed as selfish and disruptive. These opposing characteristics are also mirrored in other attributes: organization in tandem (ribosomal DNAs) versus organization in a dispersed manner (transposable elements); evolution in a concerted manner (ribosomal DNAs) versus evolution by diversification (transposable elements); and activity that prolongs genomic stability (ribosomal DNAs) versus activity that shortens it (transposable elements). Re-visiting relevant instances in which ribosomal DNA-transposable element interactions have been reported, we note that both repeat types share at least four structural and functional hallmarks: (1) they are repetitive DNAs that shape genomes in evolutionary timescales, (2) they exchange structural motifs and can enter co-evolution processes, (3) they are tightly controlled genomic stress sensors playing key roles in senescence/aging, and (4) they share common epigenetic marks such as DNA methylation and histone modification. Here, we give an overview of the structural, functional, and evolutionary characteristics of both ribosomal DNAs and transposable elements, discuss their roles and interactions, and highlight trends and future directions as we move forward in understanding ribosomal DNA-transposable element associations.
- Keywords
- concerted evolution, genome size, genome stability, homogenization, housekeeping genes, long-read sequencing, molecular cytogenetics, recombination, repetitive DNA, ribosomal DNA, transposable elements, transposition,
- MeSH
- Cytogenetic Analysis MeSH
- Genomics * MeSH
- DNA Methylation MeSH
- Evolution, Molecular MeSH
- DNA, Ribosomal MeSH
- DNA Transposable Elements * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Ribosomal MeSH
- DNA Transposable Elements * MeSH
Genes for major ribosomal RNAs (rDNA) are present in multiple copies mainly organized in tandem arrays. The number and position of rDNA loci can change dynamically and their repatterning is presumably driven by other repetitive sequences. We explored a peculiar rDNA organization in several representatives of Lepidoptera with either extremely large or numerous rDNA clusters. We combined molecular cytogenetics with analyses of second- and third-generation sequencing data to show that rDNA spreads as a transcription unit and reveal association between rDNA and various repeats. Furthermore, we performed comparative long read analyses among the species with derived rDNA distribution and moths with a single rDNA locus, which is considered ancestral. Our results suggest that satellite arrays, rather than mobile elements, facilitate homology-mediated spread of rDNA via either integration of extrachromosomal rDNA circles or ectopic recombination. The latter arguably better explains preferential spread of rDNA into terminal regions of lepidopteran chromosomes as efficiency of ectopic recombination depends on the proximity of homologous sequences to telomeres.
- Keywords
- Lepidoptera, major ribosomal RNA genes, mobile elements, satellite,
- MeSH
- Chromosomes MeSH
- Moths * genetics MeSH
- Repetitive Sequences, Nucleic Acid * MeSH
- DNA, Ribosomal genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Ribosomal MeSH