Most cited article - PubMed ID 37415333
Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69
Wheat and its close relatives have large and complex genomes, making gene cloning difficult. Nevertheless, developments in genomics over the past decade have made it more feasible. The large and complex genomes of cereals, especially bread wheat, have always been a challenge for gene mapping and cloning. Nevertheless, recent advances in genomics have led to significant progress in this field. Currently, high-quality reference sequences are available for major wheat species and their relatives. New high-throughput genotyping platforms and next-generation sequencing technologies combined with genome complexity reduction techniques and mutagenesis have opened new avenues for gene cloning. In this review, we provide a comprehensive overview of the genes cloned in wheat so far and discuss the strategies used for cloning these genes. We highlight the advantages and drawbacks of individual approaches and show how particular genomic progress contributed to wheat gene cloning. A wide range of new resources and approaches have led to a significant increase in the number of successful cloning projects over the past decade, demonstrating that it is now feasible to perform rapid gene cloning of agronomically important genes, even in a genome as large and complex as that of wheat.
- MeSH
- Genome, Plant MeSH
- Genomics MeSH
- Cloning, Molecular * methods MeSH
- Chromosome Mapping MeSH
- Triticum * genetics MeSH
- Genes, Plant * MeSH
- Publication type
- Journal Article MeSH
- Review MeSH