Nejvíce citovaný článek - PubMed ID 38613229
Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles
Genetic variation underpins evolutionary change, but mutation accumulation increases genetic load. Various factors affect the extent of load, such as population size and breeding system, but other important determinants remain unexplored. In particular, whole-genome duplication (WGD)-a pervasive macromutation occurring broadly across Eukaryotes-remains poorly understood in terms of its impact on neutral and selective processes within populations. Using iterative forward simulations and empirical analysis of 632 short- and 16 long-read sequenced individuals of Arabidopsis arenosa (in 23 diploid and 42 natural autotetraploid populations), we measure the effects of WGD on genome-wide diversity and mutation load. Our simulations show how genetic variation gradually rises in autotetraploids due to increased mutational target size. Moreover, mutation load increases due to relaxed purifying selection as ploidies rise, when deleterious mutations are masked by additional chromosome copies. Empirical data confirm these patterns, showing significant increases in nucleotide diversity, ratios of nonsynonymous to synonymous SNPs, and numbers of indels and large structural variants in A. arenosa autotetraploids. However, a rather modest increase in load proxies together with a broad distribution and niche of autotetraploids suggests load accumulation has not yet limited their successful expansion. Overall, we demonstrate a complex interplay between neutral processes and purifying selection in shaping genetic variation following WGD and highlight ploidy as an important determinant of mutation load, genetic diversity, and therefore adaptive potential in natural populations.
- Klíčová slova
- Arabidopsis, evolution, genetic load, genomics, natural selection,
- MeSH
- akumulace mutací * MeSH
- Arabidopsis * genetika MeSH
- duplikace genu MeSH
- genetická zátěž * MeSH
- genom rostlinný * MeSH
- jednonukleotidový polymorfismus MeSH
- molekulární evoluce MeSH
- mutace INDEL MeSH
- selekce (genetika) MeSH
- strukturální variace genomu MeSH
- tetraploidie * MeSH
- Publikační typ
- časopisecké články MeSH
Polyploidisation is a significant reproductive barrier, yet genetic evidence indicates that interploidy admixture is more common than previously thought. Theoretical models and controlled crosses support the 'triploid bridge' hypothesis, proposing that hybrids of intermediate ploidy facilitate gene flow. However, comprehensive evidence combining experimental and genetic data from natural mixed-ploidy species is missing. Here, we investigated the rates and directionality of gene flow within a diploid-autotetraploid contact zone of Cardamine amara, a species with abundant natural triploids. We cytotyped over 400 individuals in the field, conducted reciprocal interploidy crosses, and inferred gene flow based on genome-wide sequencing of 84 individuals. Triploids represent a conspicuous entity in mixed-ploidy populations (5%), yet only part of them arose through interploidy hybridisation. Despite being rarely formed, triploid hybrids can backcross with their parental cytotypes, producing viable offspring that are often euploid (in 42% of cases). In correspondence, D-statistics and coalescent simulations documented a significant genome-wide signal of bidirectional gene flow in sympatric but not allopatric populations. Triploids, though rare, thus seem to play a key role in overcoming polyploidy-related reproductive barriers in C. amara. In sum, we present integrative evidence for interploidy gene flow mediated by a triploid bridge in natural populations.
- Klíčová slova
- introgression, polyploidy, population genomics, speciation, whole genome duplication,
- MeSH
- Cardamine * genetika MeSH
- genová introgrese * MeSH
- hybridizace genetická MeSH
- ploidie * MeSH
- polyploidie MeSH
- populační genetika MeSH
- tok genů * MeSH
- triploidie * MeSH
- Publikační typ
- časopisecké články MeSH
Polyploidy, the result of whole genome duplication (WGD), is widespread across the tree of life and is often associated with speciation and adaptability. It is thought that adaptation in autopolyploids (within-species polyploids) may be facilitated by increased access to genetic variation. This variation may be sourced from gene flow with sister diploids and new access to other tetraploid lineages, as well as from increased mutational targets provided by doubled DNA content. Here, we deconstruct in detail the origins of haplotypes displaying the strongest selection signals in established, successful autopolyploids, Arabidopsis lyrata and Arabidopsis arenosa. We see strong signatures of selection in 17 genes implied in meiosis, cell cycle, and transcription across all four autotetraploid lineages present in our expanded sampling of 983 sequenced genomes. Most prominent in our results is the finding that the tetraploid-characteristic haplotypes with the most robust signals of selection were completely absent in all diploid sisters. In contrast, the fine-scaled variant 'mosaics' in the tetraploids originated from highly diverse evolutionary sources. These include widespread novel reassortments of trans-specific polymorphism from diploids, new mutations, and tetraploid-specific inter-species hybridization-a pattern that is in line with the broad-scale acquisition and reshuffling of potentially adaptive variation in tetraploids.