Most cited article - PubMed ID 38743818
High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams?
Although rapid eye movement (REM) sleep is often thought of as a singular state, it consists of two substates, phasic and tonic REM, defined by the presence (respectively absence) of bursts of rapid eye movements. These two substates have distinct EEG signatures and functional properties. However, whether they exhibit regional specificities remains unknown. Using intracranial EEG recordings from 31 patients, we analyzed expert-labeled segments from tonic and phasic REM and contrasted them with wakefulness segments. We assessed the spectral and connectivity content of these segments using Welch's method to estimate power spectral density and the phase locking value to assess functional connectivity. Overall, we found a widespread power gradient between low and high frequencies (p < 0.05, Cohen's d = 0.17 ± 0.20), with tonic REM being dominated by lower frequencies (p < 0.01, d = 0.18 ± 0.08), and phasic REM by higher frequencies (p < 0.01, d = 0.18 ± 0.19). However, some regions, such as the occipito-temporal areas as well as medial frontal regions, exhibit opposite trends. Connectivity was overall higher in all bands except in the low and high ripple frequency bands in most networks during tonic REM (p < 0.01, d = 0.08 ± 0.09) compared to phasic REM. Yet, functional connections involving the visual network were always stronger during phasic REM when compared to tonic REM. These findings highlight the spatiotemporal heterogeneity of REM sleep which is consistent with the concept of focal sleep in humans.
- Keywords
- REM, connectivity, microstate, phasic REM, spectrum, tonic REM,
- MeSH
- Wakefulness physiology MeSH
- Adult MeSH
- Electroencephalography MeSH
- Middle Aged MeSH
- Humans MeSH
- Brain * physiology MeSH
- Nerve Net * physiology MeSH
- Polysomnography MeSH
- Sleep, REM * physiology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Intracranial human brain recordings from multiple implanted depth electrodes using stereo-EEG (sEEG) technology for seizure localization provide unique local field potential signals (LFP) sampled with standard macro- and special micro-electrode contacts. Over one hundred macro- and micro-contact LFP signals localized in particular brain regions were recorded from each sEEG monitoring case as patients engaged in an automated battery of verbal memory and non-verbal gaze movement tasks. Subject eye and vocal responses in both visual and auditory task versions were automatically detected in Polish, Czech, and Slovak languages with accurate timing of the correct and incorrect verbal responses using our web-based transcription tool. The behavioral events, LFP and pupillometric signals were synchronized and stored in a standard BIDS data structure with corresponding metadata. Each dataset contains recordings from at least one battery task performed over at least one day. The same set of 180 common nouns in the three languages was used across different battery tasks and recording days to enable the analysis of selective responses to specific word stimuli.
- MeSH
- Electroencephalography MeSH
- Language MeSH
- Cognition * MeSH
- Humans MeSH
- Brain * physiology MeSH
- Eye Movements MeSH
- Eye-Tracking Technology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Dataset MeSH