Nejvíce citovaný článek - PubMed ID 38953869
Transcriptome changes in humans acutely exposed to nanoparticles during grinding of dental nanocomposites
AIM: To investigate the effect of acute (daily) inhalation of nanoparticles (NPs) on the transcriptomic profile of male nanocomposite research workers with a history of long-term exposure (years). MATERIALS & METHODS: Whole genome mRNA and miRNA expression changes were analyzed from blood samples collected before and after machining or welding. Exposure in the work environment was assessed using stationary and personal monitoring. RESULTS: Following PM0.1 exposure, a significant decrease in the expression of DDIT4 and FKBP5, genes involved in the stress response, was detected in exposed workers. In the Machining group, the DDIT4 expression correlated with the exposure dose. Increased levels of miR30-d-5p and miR-3613-5p (both involved in carcinogenesis) in welders were associated with the NP exposure dose, highlighting their potential suitability as inhalation exposure markers. CONCLUSION: The results from this pilot transcriptomic analysis (mRNA and miRNA) indicate that exposure to NPs contributes to immune system deregulation and alters the pathways related to cancer. Therefore, the use of protective equipment, as well as obtaining more data by additional research, is highly recommended.
This is a follow-up study to our previous research that examined the acute effects of occupational inhalation exposure to nanoparticles (NPs) in females without a previous exposure history. This time, we reexamined the impacts of acute exposure in a group of 18 male workers, including welders and nanocomposite machinists with a long-term previous exposure history at the transcriptomic level. Whole genome transcriptomics studies the complete set of RNA molecules, or transcripts, produced in a cell or organism at a specific time. The analysis allows us to understand which genes are active/inactive, how they are regulated, and how they contribute to various biological processes or diseases. We looked at changes in mRNA and miRNA (types of RNA) from blood samples taken before and after workers were exposed to dust and fumes during machining and welding. We also monitored the exposure doses. The results suggest that inhaled NPs may present an occupational hazard to human health. The transcriptomic analysis shows that exposure to welding fumes and nanocomposite dust from machining affects the immune system and alters cancer-related pathways. Our research helps to understand NP exposure effects and may contribute to minimizing the negative health consequences of their inhalation.
- Klíčová slova
- Occupational exposure, machining, nanoparticles, transcriptome changes, welding,
- MeSH
- dospělí MeSH
- inhalační expozice škodlivé účinky analýza MeSH
- lidé středního věku MeSH
- lidé MeSH
- messenger RNA genetika krev MeSH
- mikro RNA genetika krev MeSH
- nanočástice * škodlivé účinky MeSH
- pracovní expozice * škodlivé účinky analýza MeSH
- stanovení celkové genové exprese MeSH
- transkriptom * účinky léků MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA MeSH