Most cited article - PubMed ID 39115939
Engineered cytokine/antibody fusion proteins improve IL-2 delivery to pro-inflammatory cells and promote antitumor activity
BACKGROUND: Interleukin-2 (IL-2) immunotherapy can induce durable tumor remissions, but its clinical performance has been limited by significant drawbacks such as short serum half-life and high toxicity. Administration of IL-2 in complex with certain anti-IL-2 antibodies (IL-2cx) enhances circulation half-life while also selectivity directing the cytokine to particular immune cell subsets. In particular, IL-2cx has been developed that targets either cells expressing the CD25-containing high-affinity IL-2 receptor (ie, CD25-biased IL-2cx) or cells expressing the CD25-lacking intermediate-affinity IL-2 receptor (ie, CD25-blocking IL-2cx). Since regulatory T (Treg) cells primarily express the high-affinity IL-2 receptor whereas naïve effector T and natural killer cells mainly express the low-affinity IL-2 receptor, CD25-blocking IL-2cx have traditionally been considered as potential cancer therapeutics, particularly in combination with immune checkpoint inhibitors (ICIs). METHODS: Stimulation of antigen-primed T cells by IL-2cx in the absence or presence of ICIs was evaluated through adoptive transfer of primed ovalbumin-specific T cells and analysis of expansion. Effects of IL-2cx on Treg cell-mediated inhibition of CD8+ T cells were assessed by flow cytometry and thymidine incorporation. Tumor-bearing mice received combination treatments comprizing IL-2cx and ICIs, where complexes were delivered either before or after ICIs. Tumor growth and mouse survival were monitored, and immune cell phenotyping was performed. Toxicity was determined by tracking body weight, temperature, and lung edema. Substitution of IL-2cx with single-agent cytokine/antibody fusion proteins (immunocytokines, ICs) was also explored. RESULTS: We showed that CD25-biased IL-2cx and ICs synergize with ICIs to completely eradicate large, established tumors despite robust Treg cell expansion. Importantly, we found that timing is crucial, as administration of IL-2cx after (but not before) ICIs led to profound antitumor effects. Mechanistically, CD25-biased IL-2cx selectively stimulated expansion and effector functions of tumor-specific CD8+ T cells in a CD25-dependent manner, overcoming Treg cell-mediated suppression. Moreover, CD25-biased IL-2cx showed much lower toxicity than CD25-blocking IL-2cx, enabling a larger therapeutic window. Furthermore, we demonstrated that administration of a human IL-2-based IC significantly enhanced the antitumor activity of ICIs, establishing the translational relevance of our work. CONCLUSIONS: Our findings support the temporally optimized use of CD25-biased IL-2-based therapeutics in combination with ICIs for cancer immunotherapy.
- Keywords
- Cytokine, Immune Checkpoint Inhibitor, Immunotherapy, T cell, T regulatory cell - Treg,
- MeSH
- Immunotherapy methods MeSH
- Immune Checkpoint Inhibitors * pharmacology therapeutic use MeSH
- Interleukin-2 * agonists pharmacology MeSH
- Humans MeSH
- Mice MeSH
- Interleukin-2 Receptor alpha Subunit * metabolism agonists MeSH
- T-Lymphocytes, Regulatory * immunology drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Immune Checkpoint Inhibitors * MeSH
- Interleukin-2 * MeSH
- Interleukin-2 Receptor alpha Subunit * MeSH