Most cited article - PubMed ID 39714343
Striking Impact of Solvent Polarity on the Strength of Hydrogen-Bonded Complexes: A Nexus Between Theory and Experiment
The red shift of the X-H stretching frequency, with a significant increase in intensity of the corresponding spectral band and a downfield chemical shift of hydrogen (deshielding) in nuclear magnetic resonance (NMR) spectroscopy, has traditionally been used as a criterion for identifying X-H···Y hydrogen bonds (HBs) where X is the hydrogen donor and Y is the acceptor. However, over the past two decades, it has become evident that certain HBs can exhibit a blue shift in the X-H stretching frequency and may also show a decrease in IR intensity, diverging from classical expectations. In this study, we investigate a wide array of HBs, encompassing both red-shifted and blue-shifted systems, as well as protonic and hydridic HB systems. We focus on understanding the underlying electronic conditions behind the reverse chemical shift effects─upfield shifts (shielding) upon HB formation, challenging the view that hydrogen bonding (H-bonding) typically leads to deshielding. We employ state-of-the-art quantum chemical methods, integrating computed NMR shielding tensors and electron deformation density, in combination with experimental NMR, to probe that phenomenon. The computational findings are thoroughly validated against experimental results. Our research confirms that shielding is also possible upon HB formation, thereby broadening the conceptual framework of H-bonding.
- Publication type
- Journal Article MeSH