Nejvíce citovaný článek - PubMed ID 39853920
Half a Century of Temperate Non-Forest Vegetation Changes: No Net Loss in Species Richness, but Considerable Shifts in Taxonomic and Functional Composition
Traditionally managed grasslands are among the most species-rich communities, which are threatened by land use changes-management intensification or abandonment. The resistance of their species composition to mismanagement and ability to recover after re-establishment of traditional management is of prime conservational interest. In a manipulative experiment in a wet meadow, we simulated mismanagement by a factorial combination of abandonment of mowing and fertilization. The dominant species Molinia caerulea was removed in half of the plots to assess its role in community dynamics. The 21 years' mismanagement period was followed by the re-establishment of the traditional management. The plots were sampled yearly from 1994 (the baseline data, before the introduction of the experimental treatments), until 2023. Estimates of cover of all vascular plant species provided the species richness and effective number of species. For each year, the chord distances to baseline species composition and to corresponding control plot were calculated. The compositional data were analyzed by constrained ordination methods, and the univariate characteristics by Repeated Measures ANOVA. All the plots, including those with traditional management throughout the whole experiment, underwent directional changes, probably caused by a decrease in groundwater level due to global warming. Both fertilization and abandonment led to a loss of competitively weak, usually low-statured species, due to increased asymmetric competition for light. The effect of fertilization was faster and stronger than that of abandonment demonstrating weaker resistance to fertilization. The removal of dominant species partially mitigated negative effects only in unmown, non-fertilized plots. The recovery following mismanagement cessation was faster (signifying higher resilience) in unmown than in fertilized plots, where it was slowed by a legacy of fertilization. In a changing world, two reference plot types are recommended for assessment of resistance and resilience, one original state and one reflecting compositional changes independent of treatments.
- Klíčová slova
- abandonment, competition asymmetry, dominant removal, fertilization, global warming, mowing, resilience, resistance,
- Publikační typ
- časopisecké články MeSH
In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records. We focused not only on taxonomic diversity but also on the functional characteristics of communities. Species richness of most habitat types increased over time, and taxonomic and functional community composition shifted significantly. Habitat specialists and threatened species became less represented in plant communities, indicating a decline in habitat quality. The spread of trees, shrubs, tall herbaceous plants, strong competitors, and nutrient-demanding species in all non-forest habitats, coupled with the decline of light-demanding species, suggests an effect of eutrophication and natural succession following the abandonment of traditional management. Moreover, we identified specific trends in certain habitats. In wetlands, springs, and mires, moisture-demanding species decreased, probably due to drainage, river regulations, and increasing drought resulting from climate change. Dry grasslands, ruderal, weed, sand, and shallow-soil vegetation became more mesic, and successional processes were most pronounced in these communities, suggesting a stronger effect of abandonment of traditional management and eutrophication. In alpine and subalpine vegetation, meadows and mesic pastures, and heathlands, insect-pollinated species declined, and the proportion of grasses increased. Overall, these functional changes provide deep insights into the underlying drivers and help conservationists take appropriate countermeasures.
- Klíčová slova
- biodiversity change, drought, eutrophication, functional traits, habitat specialists, mesophilization, succession, vascular plants,
- MeSH
- biodiverzita * MeSH
- ekosystém * MeSH
- klimatické změny * MeSH
- rostliny * klasifikace MeSH
- zachování přírodních zdrojů MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH