Nejvíce citovaný článek - PubMed ID 7370364
PURPOSE: A supervised deep learning (DL) approach for frequency and phase correction (FPC) of MRS data recently showed encouraging results, but obtaining transients with labels for supervised learning is challenging. This work investigates the feasibility and efficiency of unsupervised deep learning-based FPC. METHODS: Two novel deep learning-based FPC methods (deep learning-based Cr referencing and deep learning-based spectral registration), which use a priori physics domain knowledge, are presented. The proposed networks were trained, validated, and evaluated using simulated, phantom, and publicly accessible in vivo MEGA-edited MRS data. The performance of our proposed FPC methods was compared with other generally used FPC methods, in terms of precision and time efficiency. A new measure was proposed in this study to evaluate the FPC method performance. The ability of each of our methods to carry out FPC at varying SNR levels was evaluated. A Monte Carlo study was carried out to investigate the performance of our proposed methods. RESULTS: The validation using low-SNR manipulated simulated data demonstrated that the proposed methods could perform FPC comparably with other methods. The evaluation showed that the deep learning-based spectral registration over a limited frequency range method achieved the highest performance in phantom data. The applicability of the proposed method for FPC of GABA-edited in vivo MRS data was demonstrated. Our proposed networks have the potential to reduce computation time significantly. CONCLUSIONS: The proposed physics-informed deep neural networks trained in an unsupervised manner with complex data can offer efficient FPC of large MRS data in a shorter time.
- Klíčová slova
- MR spectroscopy, deep learning, edited MRS, frequency correction, phase correction,
- MeSH
- deep learning * MeSH
- fantomy radiodiagnostické MeSH
- metoda Monte Carlo MeSH
- neuronové sítě MeSH
- počítačové zpracování obrazu metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Schizophrenia is a severe neuropsychiatric disease whose diagnosis, unfortunately, lacks an objective diagnostic tool supporting a thorough psychiatric examination of the patient. We took advantage of today's computational abilities, structural magnetic resonance imaging, and modern machine learning methods, such as stacked autoencoders (SAE) and 3D convolutional neural networks (3D CNN), to teach them to classify 52 patients with schizophrenia and 52 healthy controls. The main aim of this study was to explore whether complex feature extraction methods can help improve the accuracy of deep learning-based classifiers compared to minimally preprocessed data. Our experiments employed three commonly used preprocessing steps to extract three different feature types. They included voxel-based morphometry, deformation-based morphometry, and simple spatial normalization of brain tissue. In addition to classifier models, features and their combination, other model parameters such as network depth, number of neurons, number of convolutional filters, and input data size were also investigated. Autoencoders were trained on feature pools of 1000 and 5000 voxels selected by Mann-Whitney tests, and 3D CNNs were trained on whole images. The most successful model architecture (autoencoders) achieved the highest average accuracy of 69.62% (sensitivity 68.85%, specificity 70.38%). The results of all experiments were statistically compared (the Mann-Whitney test). In conclusion, SAE outperformed 3D CNN, while preprocessing using VBM helped SAE improve the results.
- Klíčová slova
- 3D CNN, autoencoders, classification, deep learning, deformation-based morphometry, schizophrenia, voxel-based morphometry,
- Publikační typ
- časopisecké články MeSH
Computer Tomography (CT) is an imaging procedure that combines many X-ray measurements taken from different angles. The segmentation of areas in the CT images provides a valuable aid to physicians and radiologists in order to better provide a patient diagnose. The CT scans of a body torso usually include different neighboring internal body organs. Deep learning has become the state-of-the-art in medical image segmentation. For such techniques, in order to perform a successful segmentation, it is of great importance that the network learns to focus on the organ of interest and surrounding structures and also that the network can detect target regions of different sizes. In this paper, we propose the extension of a popular deep learning methodology, Convolutional Neural Networks (CNN), by including deep supervision and attention gates. Our experimental evaluation shows that the inclusion of attention and deep supervision results in consistent improvement of the tumor prediction accuracy across the different datasets and training sizes while adding minimal computational overhead.
- Klíčová slova
- CNN, UNet, VNet, attention gates, deep supervision, medical image segmentation, organ segmentation, tumor segmentation,
- Publikační typ
- časopisecké články MeSH
Rapid and reliable identification of insects is important in many contexts, from the detection of disease vectors and invasive species to the sorting of material from biodiversity inventories. Because of the shortage of adequate expertise, there has long been an interest in developing automated systems for this task. Previous attempts have been based on laborious and complex handcrafted extraction of image features, but in recent years it has been shown that sophisticated convolutional neural networks (CNNs) can learn to extract relevant features automatically, without human intervention. Unfortunately, reaching expert-level accuracy in CNN identifications requires substantial computational power and huge training data sets, which are often not available for taxonomic tasks. This can be addressed using feature transfer: a CNN that has been pretrained on a generic image classification task is exposed to the taxonomic images of interest, and information about its perception of those images is used in training a simpler, dedicated identification system. Here, we develop an effective method of CNN feature transfer, which achieves expert-level accuracy in taxonomic identification of insects with training sets of 100 images or less per category, depending on the nature of data set. Specifically, we extract rich representations of intermediate to high-level image features from the CNN architecture VGG16 pretrained on the ImageNet data set. This information is submitted to a linear support vector machine classifier, which is trained on the target problem. We tested the performance of our approach on two types of challenging taxonomic tasks: 1) identifying insects to higher groups when they are likely to belong to subgroups that have not been seen previously and 2) identifying visually similar species that are difficult to separate even for experts. For the first task, our approach reached $CDATA[$CDATA[$>$$92% accuracy on one data set (884 face images of 11 families of Diptera, all specimens representing unique species), and $CDATA[$CDATA[$>$$96% accuracy on another (2936 dorsal habitus images of 14 families of Coleoptera, over 90% of specimens belonging to unique species). For the second task, our approach outperformed a leading taxonomic expert on one data set (339 images of three species of the Coleoptera genus Oxythyrea; 97% accuracy), and both humans and traditional automated identification systems on another data set (3845 images of nine species of Plecoptera larvae; 98.6 % accuracy). Reanalyzing several biological image identification tasks studied in the recent literature, we show that our approach is broadly applicable and provides significant improvements over previous methods, whether based on dedicated CNNs, CNN feature transfer, or more traditional techniques. Thus, our method, which is easy to apply, can be highly successful in developing automated taxonomic identification systems even when training data sets are small and computational budgets limited. We conclude by briefly discussing some promising CNN-based research directions in morphological systematics opened up by the success of these techniques in providing accurate diagnostic tools.
- MeSH
- fylogeneze MeSH
- hmyz klasifikace MeSH
- klasifikace metody MeSH
- neuronové sítě * MeSH
- reprodukovatelnost výsledků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH