The surface chemistry of nanomaterials, particularly the density of functional groups, governs their behavior in applications such as bioanalysis, bioimaging, and environmental impact studies. Here, we report a precise method to quantify carboxyl groups per nanoparticle by combining anisotropically collapsing agarose gels for nanoparticle immobilization with fluorescence microscopy and acid-base titration. We applied this approach to photon-upconversion nanoparticles (UCNPs) coated with poly(acrylic acid) (PAA) and fluorescence-labeled polystyrene nanoparticles (PNs), which serve as models for bioimaging and environmental pollutants, respectively. UCNPs exhibited 152 ± 14 thousand carboxyl groups per particle (∼11 groups/nm2), while PNs were characterized with 38 ± 3.6 thousand groups (∼1.7 groups/nm2). The limit of detection was 6.4 and 1.9 thousand carboxyl groups per nanoparticle, and the limit of quantification was determined at 21 and 6.2 thousand carboxyl groups per nanoparticle for UCNP-PAAs and PNs, respectively. High intrinsic luminescence enabled direct imaging of UCNPs, while PNs required fluorescence staining with Nile Red to overcome low signal-to-noise ratios. The study also discussed the critical influence of nanoparticle concentration and titration conditions on the assay performance. This method advances the precise characterization of surface chemistry, offering insights into nanoparticle structure that extend beyond the resolution of electron microscopy. Our findings establish a robust platform for investigating the interplay of surface chemistry with nanoparticle function and fate in technological and environmental contexts, with broad applicability across nanomaterials.
- MeSH
- akrylové pryskyřice chemie MeSH
- deep learning * MeSH
- fluorescenční mikroskopie MeSH
- gely chemie MeSH
- mikroplasty * chemie MeSH
- nanočástice * chemie MeSH
- polystyreny chemie MeSH
- sefarosa chemie MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akrylové pryskyřice MeSH
- carbopol 940 MeSH Prohlížeč
- gely MeSH
- mikroplasty * MeSH
- polystyreny MeSH
- sefarosa MeSH
BACKGROUND: This study aims to evaluate the feasibility of generating pseudo-normal single photon emission computed tomography (SPECT) data from potentially abnormal images. These pseudo-normal images are primarily intended for use in an on-the-fly data harmonization technique. MATERIAL AND METHODS: The methodology was tested on brain SPECT with [123I]Ioflupane. The proposed model for generating a pseudo-normal image was based on a variational autoencoder (VAE) designed to process 2D sinograms of the brain [123I]-FP-CIT SPECT, potentially exhibiting abnormal uptake. The model aimed to predict SPECT sinograms with corresponding normal uptake. Training, validation, and testing datasets were created by SPECT simulator from 45 brain masks segmented from real patient's magnetic resonance (MR) scans, using various uptake levels. The training and validation datasets each comprised 612 and 360 samples, respectively, drawn from 36 brain masks. The testing dataset contained 153 samples based on 9 brain masks. VAE performance was evaluated through brain dimensions, Dice similarity coefficient (DSC) and specific binding ratio. RESULTS: Mean DSC was 80% for left basal ganglia and 84% for right basal ganglia. The proposed VAE demonstrated excellent consistency in predicting basal ganglia shape, with a coefficient of variation of DSC being less than 1.1%. CONCLUSIONS: The study demonstrates that VAE can effectively estimate an individualized pseudo-normal distribution of the radiotracer [123I]-FP-CIT SPECT from abnormal SPECT images. The main limitations of this preliminary research are the limited availability of real brain MR data, used as input for the SPECT data simulator, and the simplified simulation setup employed to create the synthetic dataset.
- Klíčová slova
- SPECT, [123I]-FP-CIT, harmonization, variational autoencoder,
- MeSH
- autoenkodér * MeSH
- jednofotonová emisní výpočetní tomografie * MeSH
- lidé MeSH
- mozek diagnostické zobrazování MeSH
- počítačové zpracování obrazu * metody MeSH
- tropany MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2-carbomethoxy-8-(3-fluoropropyl)-3-(4-iodophenyl)tropane MeSH Prohlížeč
- tropany MeSH
BACKGROUND: This study develops a deep learning-based automated lesion segmentation model for whole-body 3D18F-fluorodeoxyglucose (FDG)-Position emission tomography (PET) with computed tomography (CT) images agnostic to disease location and site. METHOD: A publicly available lesion-annotated dataset of 1014 whole-body FDG-PET/CT images was used to train, validate, and test (70:10:20) eight configurations with 3D U-Net as the backbone architecture. The best-performing model on the test set was further evaluated on 3 different unseen cohorts consisting of osteosarcoma or neuroblastoma (OS cohort) (n = 13), pediatric solid tumors (ST cohort) (n = 14), and adult Pheochromocytoma/Paraganglioma (PHEO cohort) (n = 40). Both lesion-level and patient-level statistical analyses were conducted to validate the performance of the model on different cohorts. RESULTS: The best performing 3D full resolution nnUNet model achieved a lesion-level sensitivity and DISC of 71.70 % and 0.40 for the test set, 97.83 % and 0.73 for ST, 40.15 % and 0.36 for OS, and 78.37 % and 0.50 for the PHEO cohort. For the test set and PHEO cohort, the model has missed small volume and lower uptake lesions (p < 0.01), whereas no statistically significant differences (p > 0.05) were found in the false positive (FP) and false negative lesions volume and uptake for the OS and ST cohort. The predicted total lesion glycolysis is slightly higher than the ground truth because of FP calls, which experts can easily check and reject. CONCLUSION: The developed deep learning-based automated lesion segmentation AI model which utilizes 3D_FullRes configuration of the nnUNet framework showed promising and reliable performance for the whole-body FDG-PET/CT images.
- Klíčová slova
- Artificial intelligence, Deep learning, FDG PET/CT, Oncology,
- MeSH
- celotělové zobrazování * metody MeSH
- deep learning * MeSH
- dítě MeSH
- dospělí MeSH
- fluorodeoxyglukosa F18 * MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- nádory * diagnostické zobrazování MeSH
- PET/CT * metody MeSH
- počítačové zpracování obrazu * metody MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
- Názvy látek
- fluorodeoxyglukosa F18 * MeSH
Electroencephalography (EEG) experiments typically generate vast amounts of data due to the high sampling rates and the use of multiple electrodes to capture brain activity. Consequently, storing and transmitting these large datasets is challenging, necessitating the creation of specialized compression techniques tailored to this data type. This study proposes one such method, which at its core uses an artificial neural network (specifically a convolutional autoencoder) to learn the latent representations of modelled EEG signals to perform lossy compression, which gets further improved with lossless corrections based on the user-defined threshold for the maximum tolerable amplitude loss, resulting in a flexible near-lossless compression scheme. To test the viability of our approach, a case study was performed on the 256-channel binocular rivalry dataset, which also describes mostly data-specific statistical analyses and preprocessing steps. Compression results, evaluation metrics, and comparisons with baseline general compression methods suggest that the proposed method can achieve substantial compression results and speed, making it one of the potential research topics for follow-up studies.
- Klíčová slova
- Artificial neural networks, Data compression, Electroencephalography, Machine learning, Neuroinformatics,
- MeSH
- autoenkodér MeSH
- elektroencefalografie * metody MeSH
- komprese dat * metody MeSH
- lidé MeSH
- neuronové sítě * MeSH
- počítačové zpracování signálu * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
Social media has become a popular stage for people's views over climate change. Monitoring how climate change is perceived on social media is relevant for informed decision-making. This work advances the way social media users' perceptions and reactions towards climate change can be understood over time, by implementing a scalable methodological framework grounded on natural language processing. The framework was tested in over 1771 thousand X/Twitter posts of Spanish, Portuguese, and English discourses from Southwestern Europe. The employed models were successful (i.e., > 84% success rate) in detecting relevant climate change posts. The methodology detected specific climate phenomena in users' discourse, coinciding with the occurrence of major climatic events in the test area (e.g., wildfires, storms). The classification of sentiments, emotions, and irony was also efficient, with evaluation metrics ranging from 71 to 92%. Most users' reactions were neutral (> 35%) or negative (> 39%), mostly associated to sentiments of anger and sadness over climate impacts. Almost a quarter of posts showed ironic content, reflecting the common use of irony in social media communication. Our exploratory study holds potential to support climate decisions based on deep learning tools from monitoring people's perceptions towards climate issues in the online space.
- Klíčová slova
- Emotion analysis, Environmental monitoring, Irony detection, Natural Language processing, Sentiment analysis, Twitter,
- MeSH
- deep learning * MeSH
- klimatické změny * MeSH
- lidé MeSH
- percepce * MeSH
- sociální média * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Large language models (LLMs) are artificial intelligence (AI) based computational models designed to understand and generate human like text. With billions of training parameters, LLMs excel in identifying intricate language patterns, enabling remarkable performance across a variety of natural language processing (NLP) tasks. After the introduction of transformer architectures, they are impacting the industry with their text generation capabilities. LLMs play an innovative role across various industries by automating NLP tasks. In healthcare, they assist in diagnosing diseases, personalizing treatment plans, and managing patient data. LLMs provide predictive maintenance in automotive industry. LLMs provide recommendation systems, and consumer behavior analyzers. LLMs facilitates researchers and offer personalized learning experiences in education. In finance and banking, LLMs are used for fraud detection, customer service automation, and risk management. LLMs are driving significant advancements across the industries by automating tasks, improving accuracy, and providing deeper insights. Despite these advancements, LLMs face challenges such as ethical concerns, biases in training data, and significant computational resource requirements, which must be addressed to ensure impartial and sustainable deployment. This study provides a comprehensive analysis of LLMs, their evolution, and their diverse applications across industries, offering researchers valuable insights into their transformative potential and the accompanying limitations.
- Klíčová slova
- LLMs, Large Language models, NLP, Transformers,
- MeSH
- lidé MeSH
- průmysl * MeSH
- umělá inteligence * MeSH
- velké jazykové modely MeSH
- zpracování přirozeného jazyka * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Accurate segmentation of biomedical time-series, such as intracardiac electrograms, is vital for understanding physiological states and supporting clinical interventions. Traditional rule-based and feature engineering approaches often struggle with complex clinical patterns and noise. Recent deep learning advancements offer solutions, showing various benefits and drawbacks in segmentation tasks. This study evaluates five segmentation algorithms, from traditional rule-based methods to advanced deep learning models, using a unique clinical dataset of intracardiac signals from 100 patients. We compared a rule-based method, a support vector machine (SVM), fully convolutional semantic neural network (UNet), region proposal network (Faster R-CNN), and recurrent neural network for electrocardiographic signals (DENS-ECG). Notably, Faster R-CNN has never been applied to 1D signals segmentation before. Each model underwent Bayesian optimization to minimize hyperparameter bias. Results indicated that deep learning models outperformed traditional methods, with UNet achieving the highest segmentation score of 88.9 % (root mean square errors for onset and offset of 8.43 ms and 7.49 ms), closely followed by DENS-ECG at 87.8 %. Faster R-CNN and SVM showed moderate performance, while the rule-based method had the lowest accuracy (77.7 %). UNet and DENS-ECG excelled in capturing detailed features and handling noise, highlighting their potential for clinical application. Despite greater computational demands, their superior performance and diagnostic potential support further exploration in biomedical time-series analysis.
- Klíčová slova
- DENS-ECG, Electrophysiology Study, Faster R-CNN, Rule-based Delineation, Support Vector Machines, Time-series Segmentation, U-Net,
- MeSH
- algoritmy MeSH
- Bayesova věta MeSH
- deep learning MeSH
- elektrokardiografie * metody MeSH
- lidé MeSH
- neuronové sítě MeSH
- počítačové zpracování signálu * MeSH
- support vector machine MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In cryo-electron microscopy, accurate particle localization and classification are imperative. Recent deep learning solutions, though successful, require extensive training datasets. The protracted generation time of physics-based models, often employed to produce these datasets, limits their broad applicability. We introduce FakET, a method based on neural style transfer, capable of simulating the forward operator of any cryo transmission electron microscope. It can be used to adapt a synthetic training dataset according to reference data producing high-quality simulated micrographs or tilt-series. To assess the quality of our generated data, we used it to train a state-of-the-art localization and classification architecture and compared its performance with a counterpart trained on benchmark data. Remarkably, our technique matches the performance, boosts data generation speed 750×, uses 33× less memory, and scales well to typical transmission electron microscope detector sizes. It leverages GPU acceleration and parallel processing. The source code is available at https://github.com/paloha/faket/.
- Klíčová slova
- CryoEM, CryoET, deep learning, domain adaptation, forward model, machine learning, neural style transfer, surrogate model, synthetic data generation, transmission electron microscope,
- MeSH
- algoritmy MeSH
- deep learning * MeSH
- elektronová kryomikroskopie * metody MeSH
- počítačové zpracování obrazu metody MeSH
- software MeSH
- tomografie elektronová * metody MeSH
- Publikační typ
- časopisecké články MeSH
Predicting and quantifying phenotypic consequences of genetic variants in rare disorders is a major challenge, particularly pertinent for 'actionable' genes such as thyroid hormone transporter MCT8 (encoded by the X-linked SLC16A2 gene), where loss-of-function (LoF) variants cause a rare neurodevelopmental and (treatable) metabolic disorder in males. The combination of deep phenotyping data with functional and computational tests and with outcomes in population cohorts, enabled us to: (i) identify the genetic aetiology of divergent clinical phenotypes of MCT8 deficiency with genotype-phenotype relationships present across survival and 24 out of 32 disease features; (ii) demonstrate a mild phenocopy in ~400,000 individuals with common genetic variants in MCT8; (iii) assess therapeutic effectiveness, which did not differ among LoF-categories; (iv) advance structural insights in normal and mutated MCT8 by delineating seven critical functional domains; (v) create a pathogenicity-severity MCT8 variant classifier that accurately predicted pathogenicity (AUC:0.91) and severity (AUC:0.86) for 8151 variants. Our information-dense mapping provides a generalizable approach to advance multiple dimensions of rare genetic disorders.
- MeSH
- deep learning * MeSH
- fenotyp MeSH
- genomika MeSH
- hormony štítné žlázy metabolismus MeSH
- lidé MeSH
- mentální retardace vázaná na chromozom X genetika MeSH
- mutace ztráty funkce MeSH
- přenašeče monokarboxylových kyselin * genetika metabolismus chemie nedostatek MeSH
- svalová atrofie * genetika MeSH
- svalová hypotonie genetika MeSH
- symportéry * genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hormony štítné žlázy MeSH
- přenašeče monokarboxylových kyselin * MeSH
- SLC16A2 protein, human MeSH Prohlížeč
- symportéry * MeSH
Figure-ground organisation is a perceptual grouping mechanism for detecting objects and boundaries, essential for an agent interacting with the environment. Current figure-ground segmentation methods rely on classical computer vision or deep learning, requiring extensive computational resources, especially during training. Inspired by the primate visual system, we developed a bio-inspired perception system for the neuromorphic robot iCub. The model uses a hierarchical, biologically plausible architecture and event-driven vision to distinguish foreground objects from the background. Unlike classical approaches, event-driven cameras reduce data redundancy and computation. The system has been qualitatively and quantitatively assessed in simulations and with event-driven cameras on iCub in various scenarios. It successfully segments items in diverse real-world settings, showing comparable results to its frame-based version on simple stimuli and the Berkeley Segmentation dataset. This model enhances hybrid systems, complementing conventional deep learning models by processing only relevant data in Regions of Interest (ROI), enabling low-latency autonomous robotic applications.
- MeSH
- deep learning MeSH
- lidé MeSH
- neuronové sítě MeSH
- počítačová simulace MeSH
- robotika * metody MeSH
- zraková percepce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH