Mapping variants in thyroid hormone transporter MCT8 to disease severity by genomic, phenotypic, functional, structural and deep learning integration
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
R01 MH118281
NIMH NIH HHS - United States
E113377
EC | Eurostars
PubMed
40075072
PubMed Central
PMC11904026
DOI
10.1038/s41467-025-56628-w
PII: 10.1038/s41467-025-56628-w
Knihovny.cz E-zdroje
- MeSH
- deep learning * MeSH
- dítě MeSH
- dospělí MeSH
- fenotyp * MeSH
- genetická variace MeSH
- genetické asociační studie MeSH
- genomika metody MeSH
- hormony štítné žlázy metabolismus genetika MeSH
- lidé MeSH
- mentální retardace vázaná na chromozom X genetika metabolismus MeSH
- mladiství MeSH
- mutace ztráty funkce MeSH
- předškolní dítě MeSH
- přenašeče monokarboxylových kyselin * genetika metabolismus MeSH
- stupeň závažnosti nemoci MeSH
- svalová atrofie genetika metabolismus patologie MeSH
- svalová hypotonie genetika metabolismus MeSH
- symportéry * genetika metabolismus MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hormony štítné žlázy MeSH
- přenašeče monokarboxylových kyselin * MeSH
- SLC16A2 protein, human MeSH Prohlížeč
- symportéry * MeSH
Predicting and quantifying phenotypic consequences of genetic variants in rare disorders is a major challenge, particularly pertinent for 'actionable' genes such as thyroid hormone transporter MCT8 (encoded by the X-linked SLC16A2 gene), where loss-of-function (LoF) variants cause a rare neurodevelopmental and (treatable) metabolic disorder in males. The combination of deep phenotyping data with functional and computational tests and with outcomes in population cohorts, enabled us to: (i) identify the genetic aetiology of divergent clinical phenotypes of MCT8 deficiency with genotype-phenotype relationships present across survival and 24 out of 32 disease features; (ii) demonstrate a mild phenocopy in ~400,000 individuals with common genetic variants in MCT8; (iii) assess therapeutic effectiveness, which did not differ among LoF-categories; (iv) advance structural insights in normal and mutated MCT8 by delineating seven critical functional domains; (v) create a pathogenicity-severity MCT8 variant classifier that accurately predicted pathogenicity (AUC:0.91) and severity (AUC:0.86) for 8151 variants. Our information-dense mapping provides a generalizable approach to advance multiple dimensions of rare genetic disorders.
Amsterdam Neuroscience Cellular and Molecular Mechanisms Amsterdam The Netherlands
Center for Multimodal Imaging and Genetics University of California San Diego La Jolla CA USA
Centre for Endocrinology William Harvey Research institute Queen Mary University of London London UK
Centre for Genomic Regulation Barcelona Spain
Centrul Medical Dr Bacos Cosma Timisoara Romania
Child Neurology Unit C O A L A 5 Buzzi Children's Hospital Milano Italy
Child Neurology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
Childrens Hospital Los Angeles Los Angeles CA USA
Department of Clinical and Biomedical Science Università degli Studi di Milano Milano Italy
Department of Endocrinology Great Ormond Street Hospital for Children London UK
Department of Endocrinology St John's Medical College Hospital Bengaluru India
Department of Genetics Kaiser Permanente Washington Seattle WA USA
Department of Genetics University of Alabama at Birmingham Birmingham AL USA
Department of Internal Medicine Erasmus University Medical Center Rotterdam The Netherlands
Department of Neurology Clinica Meds School of Medicine Universidad Finis Terrae Santiago Chile
Department of Neuropediatrics University Children's Hospital University of Zurich Zurich Switzerland
Department of Paediatric Endocrinology SRCC Children's Hospital Mumbai India
Department of Paediatric Neurology Erasmus Medical Centre Rotterdam The Netherlands
Department of Paediatrics Christian Medical College Vellore India
Department of Paediatrics Flevoziekenhuis Almere The Netherlands
Department of Pediatric Endocrinology and Diabetology University Hospital Angers France
Department of Pediatrics Hematology and Oncology Medical University of Gdańsk Gdańsk Poland
Department of Pediatrics University of California UC Davis Children's Hospital Sacramento CA USA
Department of Psychiatry and Psychotherapy University Medicine Greifswald Greifswald Germany
Department of Systems Biology Harvard Medical School Boston MA USA
Department of Translational Medicine Federico 2 University 80131 Naples Italy
Division of Endocrinology and Diabetes Children's Hospital of Philadelphia Philadelphia PA USA
Division of Pediatric Endocrinology Faculty of Medicine Dokuz Eylul University İzmir Turkey
DZHK Partner Site Greifswald Greifswald Germany
East Kent Hospitals University NHS Foundation Trust Ashford UK
Endocrinology and Diabetology Unit Bambino Gesù Children's Hospital IRCCS Rome Italy
Federal University of Rio Grande do Sul Porto Alegre RS Brazil
Genomics Institute Mary Bridge Children's Hospital MultiCare Health System Tacoma WA USA
Gottfried Preyer's Children Hospital Vienna Austria
Heim Pal National Pediatric Institute Budapest Hungary
Institute of Experimental Paediatric Endocrinology Charité Universitätsmedizin Berlin Berlin Germany
Marmara University School of Medicine Department of Pediatric Endocrinology Istanbul Turkey
Medanta Superspeciality Hospital Indore India
Medical Genetics Service Hospital de Clínicas de Porto Alegre Porto Alegre Brazil
Neurological Research Institute and Baylor College of Medicine Houston TX USA
Pediatric Center Semmelweis University Budapest Budapest Hungary
Pediatric Endocrinology Group Sabara Children's Hospital São Paulo Brazil
Personalized Medicine area Special Education Sector at DLE Grupo Pardini Rio de Janeiro Brazil
Plymouth Hospitals NHS Trust Plymouth UK
Private paediatric Neurology practice Dr A van der Walt Durbanville South Africa
Royal Children's Hospital University of Melbourne Parkville Australia
Teaching Hospital of Universidade Federal de Pelotas Pelotas Brazil
Telethon Institute of Genetics and Medicine Pozzuoli Naples Italy
University of Lille Lille France
University of Louisville Louisville KY USA
Zobrazit více v PubMed
Rehm, H. L. et al. ClinGen-the Clinical Genome Resource. N. Engl. J. Med372, 2235–2242 (2015). PubMed PMC
Fagerberg, L., Jonasson, K., von Heijne, G., Uhlen, M. & Berglund, L. Prediction of the human membrane proteome. Proteomics10, 1141–1149 (2010). PubMed
Almeida, J. G., Preto, A. J., Koukos, P. I., Bonvin, A. & Moreira, I. S. Membrane proteins structures: A review on computational modeling tools. Biochim Biophys. Acta Biomembr.1859, 2021–2039 (2017). PubMed
Errasti-Murugarren, E., Bartoccioni, P. & Palacin, M. Membrane Protein Stabilization Strategies for Structural and Functional Studies. Membr. (Basel)11, 155 (2021). PubMed PMC
Pires, D. E. V., Rodrigues, C. H. M. & Ascher, D. B. mCSM-membrane: predicting the effects of mutations on transmembrane proteins. Nucleic Acids Res48, W147–W153 (2020). PubMed PMC
Heuer, H. et al. The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology146, 1701–1706 (2005). PubMed
Ceballos, A. et al. Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3,5,3’-triiodo-L-thyronine. Endocrinology150, 2491–2496 (2009). PubMed PMC
Vatine, G. D. et al. Modeling Psychomotor Retardation using iPSCs from MCT8-Deficient Patients Indicates a Prominent Role for the Blood-Brain Barrier. Cell Stem Cell20, 831–843.e835 (2017). PubMed PMC
Friesema, E. C., Ganguly, S., Abdalla, A., Manning Fox, J. E., Halestrap, A. P. & Visser, T. J. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J. Biol. Chem.278, 40128–40135 (2003). PubMed
Friesema, E. C., Kuiper, G. G., Jansen, J., Visser, T. J. & Kester, M. H. Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism. Mol. Endocrinol.20, 2761–2772 (2006). PubMed
Friesema, E. C. et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet364, 1435–1437 (2004). PubMed
Dumitrescu, A. M., Liao, X. H., Best, T. B., Brockmann, K. & Refetoff, S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am. J. Hum. Genet74, 168–175 (2004). PubMed PMC
Visser, W. E., Vrijmoeth, P., Visser, F. E., Arts, W. F., van Toor, H. & Visser, T. J. Identification, functional analysis, prevalence and treatment of monocarboxylate transporter 8 (MCT8) mutations in a cohort of adult patients with mental retardation. Clin. Endocrinol. (Oxf.)78, 310–315 (2013). PubMed
Groeneweg, S. et al. Disease characteristics of MCT8 deficiency: an international, retrospective, multicentre cohort study. Lancet Diab Endocrinol.8, 594–605 (2020). PubMed PMC
Groeneweg, S. et al. Effectiveness and safety of the tri-iodothyronine analogue Triac in children and adults with MCT8 deficiency: an international, single-arm, open-label, phase 2 trial. Lancet Diab Endocrinol.7, 695–706 (2019). PubMed PMC
Groeneweg, S., van den Berge, A., Meima, M. E., Peeters, R. P., Visser, T. J. & Visser, W. E. Effects of Chemical Chaperones on Thyroid Hormone Transport by MCT8 Mutants in Patient-Derived Fibroblasts. Endocrinology159, 1290–1302 (2018). PubMed
van Geest, F. S. et al. Long-Term Efficacy of T3 Analogue Triac in Children and Adults With MCT8 Deficiency: A Real-Life Retrospective Cohort Study. J. Clin. Endocrinol. Metab.107, e1136–e1147 (2022). PubMed PMC
Zhang, X. C., Zhao, Y., Heng, J. & Jiang, D. Energy coupling mechanisms of MFS transporters. Protein Sci: a Publ. Protein Soc.24, 1560–1579 (2015). PubMed PMC
Frazer, J. et al. Disease variant prediction with deep generative models of evolutionary data. Nature599, 91–95 (2021). PubMed
Haendel, M. et al. How many rare diseases are there? Nat. Rev. Drug Discov.19, 77–78 (2020). PubMed PMC
Rehm, H. L. Time to make rare disease diagnosis accessible to all. Nat. Med28, 241–242 (2022). PubMed PMC
McNeill, A. Good genotype-phenotype relationships in rare disease are hard to find. Eur. J. Hum. Genet30, 251 (2022). PubMed PMC
Kersseboom, S. et al. In vitro and mouse studies supporting therapeutic utility of triiodothyroacetic acid in MCT8 deficiency. Mol. Endocrinol.28, 1961–1970 (2014). PubMed PMC
Zada, D., Tovin, A., Lerer-Goldshtein, T. & Appelbaum, L. Pharmacological treatment and BBB-targeted genetic therapy for MCT8-dependent hypomyelination in zebrafish. Dis. Model Mech.9, 1339–1348 (2016). PubMed PMC
Braun, D. & Schweizer, U. The Chemical Chaperone Phenylbutyrate Rescues MCT8 Mutations Associated With Milder Phenotypes in Patients With Allan-Herndon-Dudley Syndrome. Endocrinology158, 678–691 (2017). PubMed
van Hasselt, P. M. et al. Monocarboxylate transporter 1 deficiency and ketone utilization. N. Engl. J. Med371, 1900–1907 (2014). PubMed
Kloeckener-Gruissem, B. et al. Mutation of solute carrier SLC16A12 associates with a syndrome combining juvenile cataract with microcornea and renal glucosuria. Am. J. Hum. Genet82, 772–779 (2008). PubMed PMC
Frints, S. G. et al. MCT8 mutation analysis and identification of the first female with Allan-Herndon-Dudley syndrome due to loss of MCT8 expression. Eur. J. Hum. Genet16, 1029–1037 (2008). PubMed
Quesada-Espinosa, J. F. et al. First female with Allan-Herndon-Dudley syndrome and partial deletion of X-inactivation center. Neurogenetics22, 343–346 (2021). PubMed
Olivati, C. et al. Allan-Herndon-Dudley syndrome in a female patient and related mechanisms. Mol. Genet Metab. Rep.31, 100879 (2022). PubMed PMC
Iwayama, H. et al. Measurement of Reverse Triiodothyronine Level and the Triiodothyronine to Reverse Triiodothyronine Ratio in Dried Blood Spot Samples at Birth May Facilitate Early Detection of Monocarboxylate Transporter 8 Deficiency. Thyroid31, 1316–1321 (2021). PubMed PMC
Russell, D. J., Rosenbaum, P. L., Cadman, D. T., Gowland, C., Hardy, S. & Jarvis, S. The gross motor function measure: a means to evaluate the effects of physical therapy. Dev. Med Child Neurol.31, 341–352 (1989). PubMed
Sparrow, S. S., Balla, D. A. & Cicchetti, D. V. Vineland-II Adaptive Behavior Scales: Survey Forms Manual. (AGS Publishing 2005).
Bayley, N. Bayley scales of infant and toddler development–Third edition. (Pearson Education, Inc., 2006).
Flynn, J. T. et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics140, e20171904 (2017). PubMed
Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation138, e426–e483 (2018). PubMed
Fleming, S. et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet377, 1011–1018 (2011). PubMed PMC
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature581, 434–443 (2020). PubMed PMC
Groeneweg, S., et al. Insights into the mechanism of MCT8 oligomerization. J. Endocr. Soc. 4, bvaa080 (2020) PubMed PMC
van Geest, F. S. et al. Clinical and Functional Consequences of C-Terminal Variants in MCT8: A Case Series. J. Clin. Endocrinol. Metab.106, 539–553 (2021). PubMed PMC
Masnada, S. et al. Novel mutations in SLC16A2 associated with a less severe phenotype of MCT8 deficiency. Metab. Brain Dis.34, 1565–1575 (2019). PubMed
Visser, W. E. et al. Novel pathogenic mechanism suggested by ex vivo analysis of MCT8 (SLC16A2) mutations. Hum. Mutat.30, 29–38 (2009). PubMed
Friesema, E. C., Jansen, J., Jachtenberg, J. W., Visser, W. E., Kester, M. H. & Visser, T. J. Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol. Endocrinol.22, 1357–1369 (2008). PubMed PMC
Maranduba, C. M. et al. Decreased cellular uptake and metabolism in Allan-Herndon-Dudley syndrome (AHDS) due to a novel mutation in the MCT8 thyroid hormone transporter. J. Med Genet43, 457–460 (2006). PubMed PMC
Groeneweg, S. et al. The role of Arg445 and Asp498 in the human thyroid hormone transporter MCT8. Endocrinology155, 618–626 (2014). PubMed
Johannes, J., Braun, D., Kinne, A., Rathmann, D., Kohrle, J. & Schweizer, U. Few Amino Acid Exchanges Expand the Substrate Spectrum of Monocarboxylate Transporter 10. Mol. Endocrinol.30, 796–808 (2016). PubMed PMC
Groeneweg, S., Lima de Souza, E. C., Meima, M. E., Peeters, R. P., Visser, W. E. & Visser, T. J. Outward-Open Model of Thyroid Hormone Transporter Monocarboxylate Transporter 8 Provides Novel Structural and Functional Insights. Endocrinology158, 3292–3306 (2017). PubMed
Teumer, A. et al. Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nat. Commun.9, 4455 (2018). PubMed PMC
Sidorenko, J. et al. The effect of X-linked dosage compensation on complex trait variation. Nat. Commun.10, 3009 (2019). PubMed PMC
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature562, 203–209 (2018). PubMed PMC
Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet50, 1335–1341 (2018). PubMed PMC
Makowski, C. et al. Discovery of genomic loci of the human cerebral cortex using genetically informed brain atlases. Science375, 522–528 (2022). PubMed PMC
Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data. Nat. Genet51, 1749–1755 (2019). PubMed
Bakshi, A. et al. Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits. Sci. Rep.6, 32894 (2016). PubMed PMC
Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res38, W529–533 (2010). PubMed PMC
Veidenberg, A., Medlar, A. & Loytynoja, A. Wasabi: An Integrated Platform for Evolutionary Sequence Analysis and Data Visualization. Mol. Biol. Evol.33, 1126–1130 (2016). PubMed
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol.7, 539 (2011). PubMed PMC
Hooft, R. W., Vriend, G., Sander, C. & Abola, E. E. Errors in protein structures. Nature381, 272 (1996). PubMed
Morris, G. M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem.19, 1639–1662 (1998).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589 (2021). PubMed PMC
Wejaphikul, K. et al. Role of leucine 341 in thyroid hormone receptor beta revealed by a novel mutation causing thyroid hormone resistance. Thyroid10.1089/thy.2018.0146 (2018). PubMed
Laimer, J., Hofer, H., Fritz, M., Wegenkittl, S. & Lackner, P. MAESTRO-multi agent stability prediction upon point mutations. BMC Bioinforma.16, 116 (2015). PubMed PMC
Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F. & Serrano, L. The FoldX web server: an online force field. Nucleic Acids Res33, W382–388 (2005). PubMed PMC
Martin, M. & Nicola, J. P. Impact of the Mutational Landscape of the Sodium/Iodide Symporter in Congenital Hypothyroidism. Thyroid31, 1776–1785 (2021). PubMed
Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T. & Kanehisa, M. AAindex: amino acid index database, progress report 2008. Nucleic Acids Res36, D202–205 (2008). PubMed PMC
Delgado, J., Radusky, L. G., Cianferoni, D. & Serrano, L. FoldX 5.0: working with RNA, small molecules and a new graphical interface. Bioinformatics35, 4168–4169 (2019). PubMed PMC
Pedregosa, F. V. G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. & Duchesnay, E. Scikit-learn: machine learning in python. J. Mach. Learn Res12, 2825–2830 (2011).
Waskom, M. L. Seaborn: Statistical data visualization. J. Open Source Softw.6, 3021 (2021).