Disease characteristics of MCT8 deficiency: an international, retrospective, multicentre cohort study
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
Grantová podpora
210755
Wellcome Trust - United Kingdom
210755/Z/18/Z
Wellcome Trust - United Kingdom
G0502115
Medical Research Council - United Kingdom
PubMed
32559475
PubMed Central
PMC7611932
DOI
10.1016/s2213-8587(20)30153-4
PII: S2213-8587(20)30153-4
Knihovny.cz E-zdroje
- MeSH
- biologické markery analýza MeSH
- dítě MeSH
- dospělí MeSH
- duševní poruchy etiologie patologie MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mezinárodní agentury MeSH
- míra přežití MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mutace MeSH
- následné studie MeSH
- nemoci svalů etiologie patologie MeSH
- neurovývojové poruchy etiologie patologie MeSH
- předškolní dítě MeSH
- přenašeče monokarboxylových kyselin nedostatek genetika MeSH
- prognóza MeSH
- retrospektivní studie MeSH
- senioři MeSH
- symportéry nedostatek genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- přenašeče monokarboxylových kyselin MeSH
- SLC16A2 protein, human MeSH Prohlížeč
- symportéry MeSH
BACKGROUND: Disordered thyroid hormone transport, due to mutations in the SLC16A2 gene encoding monocarboxylate transporter 8 (MCT8), is characterised by intellectual and motor disability resulting from cerebral hypothyroidism and chronic peripheral thyrotoxicosis. We sought to systematically assess the phenotypic characteristics and natural history of patients with MCT8 deficiency. METHODS: We did an international, multicentre, cohort study, analysing retrospective data from Jan 1, 2003, to Dec 31, 2019, from patients with MCT8 deficiency followed up in 47 hospitals in 22 countries globally. The key inclusion criterion was genetically confirmed MCT8 deficiency. There were no exclusion criteria. Our primary objective was to analyse the overall survival of patients with MCT8 deficiency and document causes of death. We also compared survival between patients who did or did not attain full head control by age 1·5 years and between patients who were or were not underweight by age 1-3 years (defined as a bodyweight-for-age Z score <-2 SDs or <5th percentile according to WHO definition). Other objectives were to assess neurocognitive function and outcomes, and clinical parameters including anthropometric characteristics, biochemical markers, and neuroimaging findings. FINDINGS: Between Oct 14, 2014, and Jan 17, 2020, we enrolled 151 patients with 73 different MCT8 (SLC16A2) mutations. Median age at diagnosis was 24·0 months (IQR 12·0-60·0, range 0·0-744·0). 32 (21%) of 151 patients died; the main causes of mortality in these patients were pulmonary infection (six [19%]) and sudden death (six [19%]). Median overall survival was 35·0 years (95% CI 8·3-61·7). Individuals who did not attain head control by age 1·5 years had an increased risk of death compared with patients who did attain head control (hazard ratio [HR] 3·46, 95% CI 1·76-8·34; log-rank test p=0·0041). Patients who were underweight during age 1-3 years had an increased risk for death compared with patients who were of normal bodyweight at this age (HR 4·71, 95% CI 1·26-17·58, p=0·021). The few motor and cognitive abilities of patients did not improve with age, as evidenced by the absence of significant correlations between biological age and scores on the Gross Motor Function Measure-88 and Bayley Scales of Infant Development III. Tri-iodothyronine concentrations were above the age-specific upper limit in 96 (95%) of 101 patients and free thyroxine concentrations were below the age-specific lower limit in 94 (89%) of 106 patients. 59 (71%) of 83 patients were underweight. 25 (53%) of 47 patients had elevated systolic blood pressure above the 90th percentile, 34 (76%) of 45 patients had premature atrial contractions, and 20 (31%) of 64 had resting tachycardia. The most consistent MRI finding was a global delay in myelination, which occurred in 13 (100%) of 13 patients. INTERPRETATION: Our description of characteristics of MCT8 deficiency in a large patient cohort reveals poor survival with a high prevalence of treatable underlying risk factors, and provides knowledge that might inform clinical management and future evaluation of therapies. FUNDING: Netherlands Organisation for Health Research and Development, and the Sherman Foundation.
Child Neurology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
Departamento de Neurologia Pediatrica Clinica Las Condes Santiago Chile
Department of Cardiology and Intensive Care Medicine Erasmus Medical Centre Rotterdam Netherlands
Department of Diabetes and Endocrinology Women's and Children's Hospital North Adelaide SA Australia
Department of Endocrinology St John's Medical College Hospital Bengaluru Karnataka India
Department of Neuropediatrics University Children's Hospital Zurich Zürich Switzerland
Department of Paediatric Neurology Erasmus Medical Centre Rotterdam Netherlands
Department of Paediatrics Christian Medical College Vellore India
Department of Paediatrics Semmelweis University Budapest Hungary
Department of Pediatric Endocrinology and Diabetology University Hospital Angers France
Division of Endocrinology Bambino Gesu' Children's Research Hospital IRCCS Rome Italy
Division of Paediatric Radiology Erasmus Medical Centre Rotterdam Netherlands
Division of Pediatric Endocrinology Faculty of Medicine Dokuz Eylul University İzmir Turkey
Faculdade de Medicina Centro Universitario Estácio de Ribeirão Preto Ribeirão Preto Brazil
Genomics Institute Mary Bridge Children's Hospital MultiCare Health System Tacoma WA USA
John Hunter Children's Hospital and University of Newcastle Newcastle NSW Australia
Lancashire Teaching Hospitals NHS Trust Lancashire UK
Marmara University School of Medicine Department of Pediatric Endocrinology Istanbul Turkey
Medanta Superspeciality Hospital Indore India
Medical Genetics Service Hospital de Clínicas de Porto Alegre Porto Alegre Brazil
Panorama Medical Centre Cape Town South Africa
Pediatric Endocrinology Group Santa Catarina Hospital São Paulo Brazil
Pediatric Neurology Section Hospital Francesc de Borja de Gandia Valencia Spain
Plymouth Hospitals NHS Trust Plymouth UK
Royal Children's Hospital Parkville Melbourne VIC Australia
Teaching Hospital of Universidade Federal de Pelotas Pelotas Brazil
University of Debrecen Pediatric Institute Debrecen Hungary
University of Lille Lille France
Zobrazit více v PubMed
Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–82. PubMed PMC
Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001;81(3):1097–142. PubMed
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid hormone transporters. Endocr Rev. 2019 PubMed
Heuer H, Maier MK, Iden S, Mittag J, Friesema EC, Visser TJ, et al. The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormonesensitive neuron populations. Endocrinology. 2005;146(4):1701–6. PubMed
Ceballos A, Belinchon MM, Sanchez-Mendoza E, Grijota-Martinez C, Dumitrescu AM, Refetoff S, et al. Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3,5,3’-triiodo-L-thyronine. Endocrinology. 2009;150(5):2491–6. PubMed PMC
Vatine GD, Al-Ahmad A, Barriga BK, Svendsen S, Salim A, Garcia L, et al. Modeling Psychomotor Retardation using iPSCs from MCT8-Deficient Patients Indicates a Prominent Role for the Blood-Brain Barrier. Cell Stem Cell. 2017;20(6):831–43.:e5. PubMed PMC
Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem. 2003;278(41):40128–35. PubMed
Friesema EC, Kuiper GG, Jansen J, Visser TJ, Kester MH. Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism. Mol Endocrinol. 2006;20(11):2761–72. PubMed
Visser WE, Vrijmoeth P, Visser FE, Arts WF, van Toor H, Visser TJ. Identification, functional analysis, prevalence and treatment of monocarboxylate transporter 8 (MCT8) mutations in a cohort of adult patients with mental retardation. Clin Endocrinol (Oxf) 2013;78(2):310–5. PubMed
Friesema EC, Grueters A, Biebermann H, Krude H, von Moers A, Reeser M, et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet. 2004;364(9443):1435–7. PubMed
Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet. 2004;74(1):168–75. PubMed PMC
Groeneweg S, Peeters RP, Moran C, Stoupa A, Auriol F, Tonduti D, et al. Effectiveness and safety of the tri-iodothyronine analogue Triac in children and adults with MCT8 deficiency: an international, single-arm, open-label, phase 2 trial. Lancet Diabetes Endocrinol. 2019;7(9):695–706. PubMed PMC
Schwartz CE, May MM, Carpenter NJ, Rogers RC, Martin J, Bialer MG, et al. Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene. Am J Hum Genet. 2005;77(1):41–53. PubMed PMC
Remerand G, Boespflug-Tanguy O, Tonduti D, Touraine R, Rodriguez D, Curie A, et al. Expanding the phenotypic spectrum of Allan-Herndon-Dudley syndrome in patients with SLC16A2 mutations. Dev Med Child Neurol. 2019;61(12):1439–47. PubMed
Russell DJ, Rosenbaum PL, Cadman DT, Gowland C, Hardy S, Jarvis S. The gross motor function measure: a means to evaluate the effects of physical therapy. Dev Med Child Neurol. 1989;31(3):341–52. PubMed
Bayley N. Bayley scales of infant and toddler development. Third. Pearson Education, Inc; San Antonio, TX: 2006.
Fleming S, Thompson M, Stevens R, Heneghan C, Pluddemann A, Maconochie I, et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet. 2011;377(9770):1011–8. PubMed PMC
Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics. 2017;140(3):e20171904. PubMed
Whelton PK, Carey RM, Aronow WS, Casey DE, Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13–e115. PubMed
Falagas ME, Athanasoulia AP, Peppas G, Karageorgopoulos DE. Effect of body mass index on the outcome of infections: a systematic review. Obes Rev. 2009;10(3):280–9. PubMed
von Olshausen K, Bischoff S, Kahaly G, Mohr-Kahaly S, Erbel R, Beyer J, et al. Cardiac arrhythmias and heart rate in hyperthyroidism. Am J Cardiol. 1989;63(13):930–3. PubMed
Scott O, Williams GJ, Fiddler GI. Results of 24 hour ambulatory monitoring of electrocardiogram in 131 healthy boys aged 10 to 13 years. Br Heart J. 1980;44(3):304–8. PubMed PMC
Binici Z, Intzilakis T, Nielsen OW, Kober L, Sajadieh A. Excessive supraventricular ectopic activity and increased risk of atrial fibrillation and stroke. Circulation. 2010;121(17):1904–11. PubMed
Healey JS, Connolly SJ, Gold MR, Israel CW, Van Gelder IC, Capucci A, et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med. 2012;366(2):120–9. PubMed
Perez MV, Dewey FE, Marcus R, Ashley EA, Al-Ahmad AA, Wang PJ, et al. Electrocardiographic predictors of atrial fibrillation. Am Heart J. 2009;158(4):622–8. PubMed
Matheus MG, Lehman RK, Bonilha L, Holden KR. Redefining the Pediatric Phenotype of X-Linked Monocarboxylate Transporter 8 (MCT8) Deficiency: Implications for Diagnosis and Therapies. J Child Neurol. 2015;30(12):1664–8. PubMed
Sijens PE, Rodiger LA, Meiners LC, Lunsing RJ. 1H magnetic resonance spectroscopy in monocarboxylate transporter 8 gene deficiency. J Clin Endocrinol Metab. 2008;93(5):1854–9. PubMed
Kersseboom S, Horn S, Visser WE, Chen J, Friesema EC, Vaurs-Barriere C, et al. In vitro and mouse studies supporting therapeutic utility of triiodothyroacetic acid in MCT8 deficiency. Mol Endocrinol. 2014;28(12):1961–70. PubMed PMC