Most cited article - PubMed ID 8333137
Characterisation of salivary gland antigens of Triatoma infestans and antigen-specific serum antibody response in mice exposed to bites of T. infestans
BACKGROUND: Salivary proteins of Triatoma infestans elicit humoral immune responses in their vertebrate hosts. These immune responses indicate exposure to triatomines and thus can be a useful epidemiological tool to estimate triatomine infestation. In the present study, we analyzed antibody responses of guinea pigs to salivary antigens of different developmental stages of four T. infestans strains originating from domestic and/or peridomestic habitats in Argentina, Bolivia, Chile and Peru. We aimed to identify developmental stage- and strain-specific salivary antigens as potential markers of T. infestans exposure. METHODOLOGY AND PRINCIPAL FINDINGS: In SDS-PAGE analysis of salivary proteins of T. infestans the banding pattern differed between developmental stages and strains of triatomines. Phenograms constructed from the salivary profiles separated nymphal instars, especially the 5th instar, from adults. To analyze the influence of stage- and strain-specific differences in T. infestans saliva on the antibody response of guinea pigs, twenty-one guinea pigs were exposed to 5th instar nymphs and/or adults of different T. infestans strains. Western blot analyses using sera of exposed guinea pigs revealed stage- and strain-specific variations in the humoral response of animals. In total, 27 and 17 different salivary proteins reacted with guinea pig sera using IgG and IgM antibodies, respectively. Despite all variations of recognized salivary antigens, an antigen of 35 kDa reacted with sera of almost all challenged guinea pigs. CONCLUSION: Salivary antigens are increasingly considered as an epidemiological tool to measure exposure to hematophagous arthropods, but developmental stage- and strain-specific variations in the saliva composition and the respective differences of immunogenicity are often neglected. Thus, the development of a triatomine exposure marker for surveillance studies after triatomine control campaigns requires detailed investigations. Our study resulted in the identification of a potential antigen as useful marker of T. infestans exposure.
- MeSH
- Biomarkers blood MeSH
- Electrophoresis, Polyacrylamide Gel MeSH
- Insect Proteins immunology MeSH
- Bites and Stings immunology MeSH
- Guinea Pigs MeSH
- Proteome analysis MeSH
- Antibodies blood MeSH
- Salivary Proteins and Peptides analysis immunology MeSH
- Triatoma * MeSH
- Blotting, Western MeSH
- Animals MeSH
- Check Tag
- Guinea Pigs MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Geographicals
- South America MeSH
- Names of Substances
- Biomarkers MeSH
- Insect Proteins MeSH
- Proteome MeSH
- Antibodies MeSH
- Salivary Proteins and Peptides MeSH
BACKGROUND: Phlebotomine sand flies are blood-sucking insects transmitting Leishmania parasites. In bitten hosts, sand fly saliva elicits specific immune response and the humoral immunity was shown to reflect the intensity of sand fly exposure. Thus, anti-saliva antibodies were suggested as the potential risk marker of Leishmania transmission. In this study, we examined the long-term kinetics and persistence of anti-Phlebotomus papatasi saliva antibody response in BALB/c and C57BL/6 mice. We also tested the reactivity of mice sera with P. papatasi salivary antigens and with the recombinant proteins. METHODOLOGY/PRINCIPAL FINDINGS: Sera of BALB/c and C57BL/6 mice experimentally bitten by Phlebotomus papatasi were tested by ELISA for the presence of anti-saliva IgE, IgG and its subclasses. We detected a significant increase of specific IgG and IgG1 in both mice strains and IgG2b in BALB/c mice that positively correlated with the number of blood-fed P. papatasi females. Using western blot and mass spectrometry we identified the major P. papatasi antigens as Yellow-related proteins, D7-related proteins, antigen 5-related proteins and SP-15-like proteins. We therefore tested the reactivity of mice sera with four P. papatasi recombinant proteins coding for most of these potential antigens (PpSP44, PpSP42, PpSP30, and PpSP28). Each mouse serum reacted with at least one of the recombinant protein tested, although none of the recombinant proteins were recognized by all sera. CONCLUSIONS: Our data confirmed the concept of using anti-sand fly saliva antibodies as a marker of sand fly exposure in Phlebotomus papatasi-mice model. As screening of specific antibodies is limited by the availability of salivary gland homogenate, utilization of recombinant proteins in such studies would be beneficial. Our present work demonstrates the feasibility of this implementation. A combination of recombinant salivary proteins is recommended for evaluation of intensity of sand fly exposure in endemic areas and for estimation of risk of Leishmania transmission.
- MeSH
- Time Factors MeSH
- Enzyme-Linked Immunosorbent Assay MeSH
- Insect Proteins immunology MeSH
- Immunoglobulin E blood MeSH
- Immunoglobulin G blood MeSH
- Mice, Inbred BALB C MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Phlebotomus immunology MeSH
- Salivary Proteins and Peptides immunology MeSH
- Antibody Formation * MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Retracted Publication MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Insect Proteins MeSH
- Immunoglobulin E MeSH
- Immunoglobulin G MeSH
- Salivary Proteins and Peptides MeSH