Nejvíce citovaný článek - PubMed ID 8458633
Kinetics of development of spontaneous apoptosis in B cell hybridoma cultures
Two mouse hybridoma cell lines cultured in different basal media withthe iron-rich protein-free supplement were subjected to deliberatestarvation by inoculation into media diluted with saline to 50% or less.In the diluted media the growth was markedly suppressed and a largefraction of cells died by apoptosis. The cells could be rescued fromapoptotic death by individual additions of amino acids, such as glycine,L-alanine, L-serine, L-threonine, L-proline, L-asparagine, L-glutamine,L-histidine, D-serine, β-alanine or taurine. Amino acids withhydrophobic or charged side chains were without effect. The apoptosispreventing activity manifested itself even in extremely diluted media,down to 10% of the standard medium. The activity of L-alanine in theprotection of cells starving in 20% medium was shown also in semicontinuousculture. In the presence of 2 mM L-alanine the steady-state viable cell density more than doubled, with respect to control, andthe apoptotic index dropped from 37% in the control to 16%. It wasconcluded that the apoptosis-preventing amino acids acted as signalmolecules, rather than nutrients, and that the signal had a character ofa survival factor. The specificity of present results, obtained with twodifferent hybridomas, supports our view (Franěk and Chládková-Šrámková, 1995) that the membranetransport macromolecules themselves may play the role of therecognition elements in a signal transduction pathway controlling thesurvival of hybridoma cells.
- Publikační typ
- časopisecké články MeSH
Two mouse hybridoma cell lines cultured in different basal media with the iron-rich protein-free supplement were subjected to deliberate starvation by inoculation into media diluted with saline to 50% or less. In the diluted media the growth was markedly suppressed and a large fraction of cells died by apoptosis. The cells could be rescued from apoptotic death by individual additions of amino acids, such as glycine, L-alanine, L-serine, L-threonine, L-proline, L-asparagine, L-glutamine, L-histidine, D-serine, β-alanine or taurine. Amino acids with hydrophobic or charged side chains were without effect. The apoptosis preventing activity manifested itself even in extremely diluted media, down to 10% of the standard medium. The activity of L-alanine in the protection of cells starving in 20% medium was shown also in semicontinuous culture. In the presence of 2 mM L-alanine the steady-state viable cell density more than doubled, with respect to control, and the apoptotic index dropped from 37% in the control to 16%. It was concluded that the apoptosis-preventing amino acids acted as signal molecules, rather than nutrients, and that the signal had a character of a survival factor. The specificity of present results, obtained with two different hybridomas, supports our view (Franěk and Chládková-Šrámková, 1995) that the membrane transport macromolecules themselves may play the role of the recognition elements in a signal transduction pathway controlling the survival of hybridoma cells.
- Publikační typ
- časopisecké články MeSH
Mouse hybridoma cells cultured on the verge of starvation-induced apoptosis, i.e. in a medium diluted with saline, proved to serve as a sensitive screening system for apoptosis-suppressing activity of nutrient medium components. Conventional amino acid mixtures were found to suppress the starvation-induced apoptosis, whereas a vitamin mixture was ineffective. (Franěk F (1995) Biotechnol. Bioeng. 45: 86-90). Recent experiments showed that suppression of apoptosis, and concurrent resumption of growth, could be achieved by addition of single substances at millimolar concentrations. The set of active substances included certain coded L-amino acids (glycine, alanine, serine, threonine, proline, asparagine, glutamine, histidine), non-coded amino acids (β-alanine, taurine, 4-aminobutyric acid), and a non-metabolizable analogue (2-aminoisobutyric acid). This finding shows that some amino acids do not act solely as nutrients, but also as specific signal molecules. The specificity of the effect points to the involvement of adaptively regulated amino acid transport systems A and N in maintaining the balance between triggering and suppression of starvation-induced apoptosis.
- Publikační typ
- časopisecké články MeSH