Nejvíce citovaný článek - PubMed ID 8682405
Progress in studies on Central Asian foci of zoonotic cutaneous leishmaniasis: a review
In Uzbekistan, the number of reported leishmaniasis cases is rising at the alarming rate. In this work, we studied the phlebotomine sand fly (Diptera: Phlebotominae) diversity in the foci of cutaneous leishmaniasis in the Surxondaryo Region of Uzbekistan and compared it with the data obtained for the same area 50 years ago, when infection prevalence was reportedly low. We found that the implicated vector for zoonotic leishmaniasis, P. papatasi, remained eudominant; the proportion of implicated anthroponotic leishmaniasis vector, P. sergenti, rose significantly from averaged 5.4 to 41.4%; Phlebotomus alexandri, a suspected visceral leishmaniasis vector, was eudominant at two sites, and a second suspected vector for this disease, P. longiductus, was newly recorded in the region. We conclude that the increase in the documented cases of cutaneous leishmaniasis in the Surxondaryo Region of Uzbekistan may be connected to the changes in fauna of sand flies vectoring Leishmania spp.
- Klíčová slova
- Diversity, Leishmania, Phlebotomus,
- MeSH
- hmyz - vektory MeSH
- leishmanióza kožní * epidemiologie MeSH
- leishmanióza viscerální * epidemiologie MeSH
- Phlebotomus * MeSH
- Psychodidae * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Uzbekistán epidemiologie MeSH
Leishmaniases are neglected diseases caused by protozoans of the genus Leishmania that threaten millions of people worldwide. Cutaneous leishmaniasis (CL) caused by L. major is a typical zoonosis transmitted by phlebotomine sand flies and maintained in rodent reservoirs. The female sand fly was assumed to become infected by feeding on the skin lesion of the host, and the relative contribution of asymptomatic individuals to disease transmission was unknown. In this study, we infected 32 Meriones shawi, North African reservoirs, with a natural dose of L. major obtained from the gut of infected sand flies. Skin manifestations appeared in 90% of the animals, and xenodiagnosis with the proven vector Phlebotomus papatasi showed transmissibility in 67% of the rodents, and 45% were repeatedly infectious to sand flies. Notably, the analysis of 113 xenodiagnostic trials with 2189 sand flies showed no significant difference in the transmissibility of animals in the asymptomatic and symptomatic periods; asymptomatic animals were infectious several weeks before the appearance of skin lesions and several months after their healing. These results clearly confirm that skin lesions are not a prerequisite for vector infection in CL and that asymptomatic animals are an essential source of L. major infection. These data are important for modeling the epidemiology of CL caused by L. major.
- Klíčová slova
- Leishmania, Meriones, Phlebotomus, asymptomatic infection, reservoir host, xenodiagnosis,
- Publikační typ
- časopisecké články MeSH
In this work we reviewed historical and recent data on Leishmania spp. infection combining data collected in Turkmenistan, Uzbekistan, Kazakhstan, Kyrgyzstan, Iran, China and Mongolia. We specifically focused on a complex of co-existing species (Leishmania major, Leishmania turanica and Leishmania gerbilli) sharing the same animal reservoirs and vectors. In addition, we analysed the presence of dsRNA viruses in these species and discussed future research directions to identify species-specific traits, which may determine susceptibility of different Leishmania spp. to viral infection.
- Klíčová slova
- Animal reservoir, Leishmania gerbilli, Leishmania major, Leishmania turanica, Leishmaniavirus, central Asia, coinfection, great gerbils,
- MeSH
- Gerbillinae MeSH
- Leishmania major * MeSH
- leishmanióza kožní * epidemiologie MeSH
- leishmanióza * epidemiologie MeSH
- zdroje nemoci MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- Turkmenistán MeSH
BACKGROUND: In Central Asian foci of zoonotic cutaneous leishmaniases, mixed infections of Leishmania turanica and L. major have been found in a reservoir host (the great gerbil, Rhombomys opimus) as well as in the sand fly vector Phlebotomus papatasi, but hybrids between these two Leishmania species have never been reported. In addition, the role of sand fly species other than P. papatasi in L. turanica circulation is not clear. METHODS: In this work we compared the development of L. turanica in three sand fly species belonging to different subgenera. In addition, we studied experimental co-infections of sand flies by both Leishmania species using GFP transfected L. turanica (MRHO/MN/08/BZ18(GFP+)) and RFP transfected L. major (WHOM/IR/-/173-DsRED(RFP+)). The possibility of Leishmania genetic exchange during the vectorial part of the life cycle was studied using flow cytometry combined with immunofluorescent microscopy. RESULTS: Late-stage infections of L. turanica with frequent colonization of the stomodeal valve were observed in the specific vector P. (Phlebotomus) papatasi and in the permissive vector P. (Adlerius) arabicus. On the other hand, in P. sergenti (the specific vector of L. tropica), L. turanica promatigotes were present only until the defecation of bloodmeal remnants. In their natural vector P. papatasi, L. turanica and L. major developed similarly, and the spatiotemporal dynamics of localization in the sand fly gut was the same for both leishmania species. Fluorescence microscopy in combination with FACS analyses did not detect any L. major / L. turanica hybrids in the experimental co-infection of P. papatasi and P. duboscqi. CONCLUSION: Our data provide new insight into the development of different leishmania parasite species during a mixed infection in the sand fly gut. Despite the fact that both Leishmania species developed well in P. papatasi and P. duboscqi and did not outcompete each other, no genetic exchange was found. However, the ability of L. turanica to establish late-stage infections in these specific vectors of L. major suggests that the lipophosphoglycan of this species must be identical or similar to that of L. major.
- MeSH
- barvení a značení metody MeSH
- červený fluorescenční protein MeSH
- fluorescenční mikroskopie MeSH
- gastrointestinální trakt parazitologie MeSH
- Leishmania růst a vývoj fyziologie MeSH
- luminescentní proteiny analýza genetika MeSH
- mikrobiální interakce * MeSH
- Phlebotomus parazitologie MeSH
- zelené fluorescenční proteiny analýza genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- luminescentní proteiny MeSH
- zelené fluorescenční proteiny MeSH